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Abstract: A Genetic Algorithm (GA) with nested zooming strategy is proposed for the determination of the optimal open pit mine
design.

Different genetic procedures are applied to increase robustness, namely two typologies of admissible mutations for the elite sub-
population  subjected  to  zooming  and  mutation  and  reproduction  for  the  remaining  individuals.  In  order  to  further  improve
convergence rate, a user-defined population percentage, depending on individuals fitness, is replaced with new phenotypes, enforcing
chromosomic renewal.

Several comparisons with (traditionally used) dynamic programming approaches are provided both for 2D and 3D open pit mines.
Both small and large scale mines are analyzed, to benchmark the code in presence of several variables.

Results show that the procedure proposed requires a very limited computational effort, both for challenging problems with several
variables and when a micro-GA (populations with few individuals) is adopted for small scale problems.

Keywords: 2D and 3D numerical simulations, Economic value maximization, Genetic Algorithm, Integer programming, Open pit
mine design.

1. INTRODUCTION

The so called “open pit mining problem” [1 - 4] consists in the determination of the contour of a mine at the end of
its life, which maximizes mine economic value, satisfying stability and excavation constraints. Mine stability is related
to  the  maximum  inclination  of  the  edge  of  the  excavated  region  and  is  strictly  connected  to  the  typology  of  rock
considered.

One of the most interesting challenges related to this topic is the ability to solve practical problems with sufficiently
large  data  sets  and to  adjust  the  initial  solution at  different  periods  following different  scenarios  based on markets
evolution [5, 6]. Whilst this latter problem is extremely complex and out of the present scopes, it is worth noting that a
real time adjustment requires in any case as preliminary an efficient and reliable software for the determination of the
final excavation layout (at fixed input parameters).

Reliable codes are nowadays available for practitioners, usually based on dynamic programming, moving cones and
integer programming strategies. In all these cases, the so called “block model” is used. A block model consists into the
discretization  of  the  open  pit  with  small  parallelepipeds,  each  one  uniform  from  a  geological,  mechanical  and
economical  point  of  view.

From a mathematical point of view, the open pit mining problem belongs to the wide class of integer programming,
therefore general operational research strategies based, for instance, on branch and bound should be attempted.
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Nevertheless,  traditional  approaches  adopted  by  engineers  (and  still  very  diffused)  are  based  on  the  so  called
dynamic  programming  (DP)  technique.  DP  is  probably  the  first  semi-automatic  method  proposed  in  the  technical
literature [3]. It consists of a forward pass, in which an economic pit value Pij for each block is determined with its
dependence  with  respect  to  previous  column  blocks.  The  blocks  are  examined  level  by  level  within  each  column,
proceeding  column  by  column  in  the  section.  A  backward  pass  is  also  required,  in  which  blocks  dependences  are
evaluated step by step from the last column, giving at the end the optimal layout of the pit. Starting from the pioneering
work by Lerchs and Grossman [7], who proposed a dedicated 2D dynamic programming approach also known as LG
method, a number of improved dynamic programming algorithms have been proposed in the past for the analysis of 3D
open-pits [8 - 10].

Despite their well-known capabilities in solving medium and large scale problems, DP methods and LG in particular
present some practical limitations which justify new efforts to provide alternative strategies for the resolution of the
open pit mining problem. In fact, LG method performs well for 2D problems, but its generalization to the 3D case is not
trivial. On the other hand, it is well known that DP requires particular care in the 3D case, as demonstrated by Shenggui
and Starfield [11], who shown that a degeneration can occur in the Koenigsberg algorithm due to an over constrained
formulation of the problem.

In order to avoid DP limitations, researchers focused on new strategies, essentially based on an association of DP
and minimum removal cones, see Wilke and Wright [10].

A  successful  idea  is  the  adaptation  of  2D  algorithms  to  the  3D  case.  However,  if  a  2D  DP  without  minimum
removal cones (Lerchs and Grossman [7]) is utilized on consecutive sections into a 3D pit, a so called “smoothing” of
the pit boundaries is required. When DP is used and when the geometric constraints are specified too strictly, the pit
limit will result not optimal. On the contrary if constraints are specified more loosely, the computed pit contours will
require a smoothing. Different smoothing processes have been proposed in the past, as for instance the so called colour
graphics approach [11], resulting promising but somewhat heuristic and not completely automatic.

Minimum removal cones strategy is the core of the algorithm known as “moving cone (MC) technique”. In the MC
procedure, each ore block is considered in sequence, starting from the surface of the mine. For each ore block, the so
called  “minimum  removal  cone”  is  constructed,  consisting  in  the  minimum  collection  of  the  blocks  of  the  mine
(according  to  slope  stability  constraints),  permitting  to  excavate  the  block  under  consideration.  If  the  sum  of  the
economic values of the blocks contained in the reverse cone is positive, the cone is considered removed. The procedure
is continued until all the ore blocks in the model are examined. The ultimate pit is formed by the shape left after the
removal of all positive valued cones. Despite MC simplicity, a strong limitation is clearly the aprioristic assumption of
the search order for positive valued blocks, resulting in some cases into incapacity to recognize the true maximum pit
value.

Against traditional approaches proposed by engineers, general mathematical concepts from optimization theory may
be  used  to  tackle  the  problem,  which  is  indeed  a  specific  integer  programming  (IP)  problem,  for  which  automatic
branch and bound algorithms [2, 12, 13] are nowadays at disposal. Nevertheless, it is well known from optimization
theory [12, 13] that in tree structures, number of nodes grows exponentially with the number of variables and may not
even be finite. Therefore, to examine the whole tree may be very expensive and only partial searches inside the tree can
be  attempted.  As  a  consequence,  the  procedure  competes  favourably  in  practice  with  alternative  approaches  if  the
partial search strategy is carefully chosen, deciding which node should be solved next and on which variable should a
branch be made. Branch and bound can be avoided formulating the problem by means of a network flow algorithm [2],
which allows the utilization of linear programming on the dual problem. It has been shown that the algorithm is closely
related to LG one [7]. Thus, several questions arise in the 3D case, in particular when dependences between blocks are
established. Of course, if a Koenigsberg approach is adopted, degenerations may occur, suggesting its association with
minimum removal cones, thus bringing back to Wilke and Wright [10] idea.

In order to avoid all the aforementioned drawbacks and limitations, here a meta-heuristic approach based on Genetic
Algorithm (GA) is proposed for predicting the optimum pit layout of both 2D and 3D mines. Particular emphasis is put
on large scale examples, with the aim of testing the practical capabilities of the method, both in terms of convergence to
the optimal solution and time required for the simulations.

At  a  first  glance,  the  economic  value  of  the  blocks  is  fixed  during  the  excavation  from geological/geophysical
inspections. In practice, it would be much more realistic if it could change when the excavation profile varies, but this
would lead to a different, more complex optimization problem. The use of the total undiscounted economic value of the
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mine as objective function, calculated as the sum of economic values of the blocks to remove, is indeed a limitation, at
least from the viewpoint of a mining engineer. It would be interesting to take into account the extraction schedule that
aims to maximize the Net Present Value (NPV) of the mining project [14], combining within the algorithm open-pit
final  limits  and  extraction  scheduling  in  the  optimization  procedure  [15],  thus  helping  in  the  direction  of  practical
applications; however, such achievement is over the scopes of the present implementation, which should be regarded as
a preliminary study on optimal open pit layouts by means of meta-heuristic approaches. Future developments of the
model will include the implementation of extraction schedule issues.

Whilst the application of stochastic search methodologies is not new both in slope stability [16, 17] and mining
engineering [18, 19], the GA proposed here is a non-standard one and allows a relatively quick convergence to the
optimal solution showing excellent stability and robustness, both in case of problems with many variables and enforcing
the GA to work with small populations (micro-GA).

A nested zooming strategy, consisting in the subdivision of the population at each iteration into two sub-groups,
depending on individuals grade of fitness (elitist  strategy),  is  the core of the procedure proposed. Different genetic
operations  are  applied  to  the  sub-groups,  consisting  of  both  two  different  admissible  mutations  for  the  elite  sub-
population  and  mutation  and  reproduction  for  the  remaining  individuals.  A  user-defined  population  percentage,
depending on individual fitness, is replaced with new phenotypes at each iteration, enforcing chromosomic renewal and
hence allowing a further increase of the convergence rate.

The approach is fast (very simple computations are typically required in any GA, therefore problems with many
unknowns can be tackled efficiently) and generally very reliable.

However, the intrinsic GA nature (which belongs to the wide family of meta-heuristic approaches) is to provide in
some limited cases suboptimal solutions. This drawback cannot be avoided, it is typical of any GA and must be checked
re-running the analyses several times, to estimate how many times the algorithm provides suboptimal solutions.

Fig. (1). Typical 2D discretization of a mine using square blocks with slope angles constraints.

Degeneracy can occur in rare events as well, in particular enforcing limit values for GA input parameters (e.g. in
micro-GAs, very high or very low values of zooming and mutation, very small initial populations, etc.). Again, it cannot
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be avoided in principle, but assuming reasonable values for GA input parameters degeneracy occurrence (as well as
convergence to suboptimal solutions) turns out to be rather improbable.

To  benchmark  the  model,  several  comparisons  with  previously  presented  results  obtained  with  dynamic
programming are provided both for 2D and 3D problems. Simulations show that reliable results can be obtained at a
very limited computational effort.

2. ULTIMATE OPEN PIT MINE DESIGN: BASIC ISSUES

A rectangular block large enough to cover the area of interest is placed around the mineral deposit, Fig. (1), and
further discretized into smaller blocks, generally of various sizes and shapes, but constituted by the same material with a
well-defined economic value. There are various types of block models [4], nevertheless the regular 3D fixed block is
the most commonly used. The pit design problem relies in finding the collection of blocks to remove which will assure
the maximum profit, subjected to mine stability and mining constraints. For the sake of simplicity here cubic blocks are
used  with  a  maximum slope  angle  equal  to  45°  (i.e.  1:1  slope  stability  criterion).  Here,  it  is  worth  noting  that  the
assumption of a 1:1 slope criterion is not a limitation for the GA approach proposed hereafter. As a matter of fact, any
slope stability  rule  can be used without  any limitation,  the  effect  being only a  change into  the  cross  section of  the
blocks, which is square in case of a 1:1 slope stability constraint and rectangular otherwise.

Let’s indicate with B(i, j, k) a block with economic value E(i, j, k) positioned on a (i, j, k) grid into a P pit. Let PA is
a  3D matrix  of  dimensions  ni  ×  nj  ×  nk  (ni,  nj  and  nk  number  of  subdivisions  along  i,  j  and  k)  representing  slope
stability constraints and assuming integer values at each block B, such that:

(1)

with PA(i, j, k) = 0 if B(i, j, k) is impossible to excavate under slope constraints and 1 otherwise.

For  each  B( ,  j,  k)  block  immediately  under  the  last  block  excavated  in  position  (j,  k),  the  following  mining
constraints involving block B( , j, k) and its neighbours must be satisfied, (Fig. 2):

(2)

With reference to Fig. (2) block  along the height of the open pit (index i) must be excavated in such a way that its
neighbours are either less (i, -1) or more (i, +1) excavated by a unit.

Fig. (2). Cell (j, k) neighbours in the 3D case. Case A: case 1 < j < nj 1 < k < nk. Case B: case j = njk = nk.

Obviously, if a block is on the mine boundary column, i.e. j = 1; nj and/or j = 1; nk, ( 2 ) requirements reduce from
16 to 2nk inequalities (nk: number of neighbour columns).

Let’s indicated with Pjk the economic value of all the blocks excavated in column (j, k), i.e.:

(3)

   1;0,, kjiAP  

8,,1

1ˆ1




r

iii rr  

j

i
i

i

k

ii
i

8

7 6i 5

4

i2i1 3

ii8

2ii1

 
              Case A                Case B 

î

î
î
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According to equations ( 1 )-( 3 ), the ultimate open pit optimization problem can be written as:

(4)

( 4 ) is a linear integer programming problem.

3. THE 2D/3D GA PROPOSED

The reproduction of optimal open pits can be easily tackled with genetic schemes [20 - 23], avoiding in this way the
utilization of DP, MC and integer programming. The advantage is represented by (a) the theoretical simplicity, (b) the
robustness and efficiency in terms of time required for the optimization and (c) its applicability to large scale 2D/3D
problems.

Differently from DP, the assumption of cubic blocks and 1:1 slope stability does not imply a loss of generality,
because individual generation depends only on random processes based on simple admissibility inequalities which can
be changed case by case, whereas selection occurs only on the base of individual fitness evaluation.

The kernel is similar to that adopted in a different context by the author in [24 - 28], where the reader is forwarded
to have a detailed insight into specific technical issues. Here it is worth noting that the GA adopted relies into standard
(reproduction,  crossover  and  mutation)  and  non  standard  genetic  operations  [29,  30],  namely  zooming  and  elitist
strategy.

Each individual is an admissible ultimate open-pit surface, i.e. a sequence of (i, j, k) blocks. Individual encoding by
means of binary strings results particularly easy and the genotypes (chromosome values) are uniquely mapped onto the
decision variable (phenotypic) domain. In Fig. (3) a sketch of the kernel is represented.

In a preliminary Step (0) a random admissible initial population x = {xi : i = 1,…, Nind | xi admissible} is generated.
The issue related to admissibility is interesting and discussed hereafter in the paper.

In Step 1, xi individual fitness F(xi) is evaluated as the economic value of the open-pit assuming as xi the ultimate
surface. In the second Step (2), which is properly known in the literature as zooming, two sub groups are formed, x̅ = {x̅i
: i = 1,…, Nelit | x̅iM admissible} and y = x - x̅ = {yi : i = 1:,…, Nind-Nelit}, so that x̅ collects Nelit (user defined) individuals
with high fitness.

Step 3 works on both x̅ and y. When dealing with the elite sub-population (3a), for each xi individual, a random
improvement is attempted, applying two different mutation operators (1st and 2nd type). The new xiM individual resulting
from mutation overwrites xi only if its fitness F(xiM) is greater than F(xi). A new sub-group x̅M = {x̅iM : i = 1,…, Nelit | x̅iM
admissible} is thus obtained, with higher fitness. When dealing with the small fitness sub-population y (3b), for each yi

individual,  1st  type  mutation  is  applied  Nmut  times,  leading  to  an  improvement  of  yi  fitness.  The  new individual  yiM

overwrites yi based again on the better fitness criterion. Reproduction is applied only on a portion of yM (i.e. on (Nind-
Nelit)/  ρ)  parents  with  user  defined  parameter  ρ  >  1),  creating  new  c  offsprings.  yM  individuals  excluded  from
reproduction are ex-novo generated with the same principles used in Step 0 and recorded into cN = {cNj : j : 1,…, (Nind-
Nelit)/ ρ | cNj admissible}. At the end of the i-th iteration, a new population x = [x̅M c cN] is obtained (Step 4).
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Fig. (3). Pseudo-code of the GA proposed.

3.1. Admissible Individuals

The  generation  of  admissible  individuals  requires  not  violating  any  admissibility  condition.  3D  and  2D
implementations are conceptually identically and slight differences occur in practice, therefore here particular emphasis
is given to the 2D case for the sake of clearness. Considering the 2D deposit in Fig. (4), where B(i,  j) is a block in
position (i, j), it can be noted that starting from the first column, in which only the block (1, 1) can be mined, different
individuals may be selected at random passing successively from column  to  + 1, with  + 1 ≤ nj and satisfying
the following admissibility constraints:

(5)

where iP is the row of the deepest block mined in column  - 1.

 is selected with a classical roulette wheel approach, in which different probabilities are assigned at the different
possible path choices, depending on the economic value of the block to remove.

In particular, the probability Pblock of each block is evaluated by means of the following formula:
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ĵ



The Open Civil Engineering Journal, 2016, Volume 10   307

(6)

Where NM is the total number of possibilities in column j, Ej is the economic value of block B(i, j) and kr is a set of
constants which can be differently calibrated case by case, but which generally assume the following values

(7)

In  this  way,  a  substantial  improvement  of  the  local  quality  (in  terms  of  economic  value)  is  obtained  for  each
individual.

As a rule, for the 2D case and assuming a 1:1 slope stability constraint, only 5 different admissibility rules hold, as
shown in Figs. (5, 6). Nevertheless, in the code, an automatic generation of admissible individuals is possible without
the particular  assumptions deduced in  Fig.  (4)  for  a  1:1 slope stability  constraint.  In  fact,  once that  matrix  PA  is  at
disposal,  a  rectangular  vector  Ppos  of  dimensions 1xNpos  is  generated,  representing all  the admissible  possibilities  to
select. More in detail, each element of Ppos is an admissible i index that can be assumed by the ultimate open-pit surface
in correspondence of column (i , j) and Npos is the total number of admissible indices.

Fig. (4). Possible tree structure of an open pit (branch and bound approach). From left to right arrows indicate admissible blocks at
each column.

Fig. (5). Restrictions at each block due to slope constraints, 2D case. Black points: unrestricted. Blue points: surface restriction.
Purple points: right slope restriction (double possibility). Yellow points: right slope restriction (univocal choice). Red points: zone
not removable.
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Fig. (6). Progression rules from column Cn - 1 to column Cn, 2D case.

Matrix PA is easily obtained making used of a robust graphical 3D pre-processor implemented into MatlabTM [22].
As a rule, slope stability constraints are user defined and are pre-processed importing dxf files in which slope stability
constraints are modelled with triangular/quadrangular planar surfaces, Fig. (7). Even complex geological situations can
be treated with the model at hand, simply checking in the pre-processing phase for each block of the mesh if its centroid
lays in the admissible region.

Fig. (7). 3D slope stability constraints in case of stability angle equal to 45°. GUI kit for the determination of PA matrix (data from
dxf to Matlab).

Finally, it is worth noting that, for what concerns the 3D case, the generation of admissible individuals is tacked
analogously to the 2D case. In particular, individuals are generated randomly with a double loop on j and k indices and
checking admissibility conditions of column (j, k) only with respect to previously filled cells (i.e. (j - 1, k - 1), (j, k - 1),
(j - 1, k) and (j - 1, k + 1)), making use of the following rules (see also Fig. 8):
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(8)

Obviously, equation (8) does not hold for columns j = 1 and k = 1.

The recursive application of equation (8) assures the generation of an admissible individual also in the 3D case.

Fig. (8). Generation of an admissible individual during the generation process in the GA, 3D case.

3.2. Reproduction, Zooming, Mutation, Crossover and Objective Function

Reproduction, zooming, crossover and mutation are relatively standard and already utilized by the author in other
contexts [24 - 28]. For this reason here only a concise review of some technical details is provided.

Reproduction is applied only to y = {yi : i = 1 : Nind-Nelit}, mating individuals with high fitness. A stochastic sampling
with replacement (roulette wheel) is utilized.

Only an offspring per pair is generated and (Nind-Nelit)/ ρ reproductions are allowed.

Zooming consists in collecting at each iteration high fitness individuals into an “elite” sub-population x̅ (with user
defined dimension Nelit), where high probability mutation is applied in order to improve further fitness. Elitism preserves
the  original  individual  if  mutation  results  into  a  fitness  reduction,  whereas  zooming  restricts  search  domain,  so
improving in any case convergence rate.

Zooming is a-priori set user defined through zooming percentage z%, defined as the percentage ratio between x and x̅

(9)

It is worth noting that z% can be changed according to pre-established rules, iteration by iteration. However, this is
not done here, because the rule to follow for a dynamic zooming change is not either a-priori known or deduced from
robust scientific bases.

Intermediate recombination (crossover) used in the paper is linear, i.e. the offspring O1 is obtained from parents P1

and P2 as follows:
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(10)

Where α is an integer fixed scaling factor, which in some cases can be chosen randomly.

Considering two different individuals, here denoted as G1 (fitness F1) and G2 (fitness F2), such that Gr = {(i, j, k) | j ≤
nj ; k ≤ nk ; i admissible}, intending as admissible all those i indices satisfying slope constraints and mining stability,
C12 offspring is simply generated as weighted linear combination between G1 and G2, (see Fig. 9):

(11)

Finally, C12 fitness is evaluated; when one of the parents fitness is higher than that of the offspring, parent existence
is preserved (survival of the elitist).

Fig. (9). Reproduction phase (weighted reproduction) from two parents with different fitness.

1st type mutation is applied both to x̅ and y. On x̅i (associated matrix Gi(j, k) = ), it is repeated Nmut times randomly
selecting a column (j, k) of the pit and changing in the admissible domain the value  of matrix Gi as follows:

(12)

where  is an integer which denotes the new admissible row of the last block to be removed for column (j, k).
Obviously admissibility conditions must be checked to avoid individual inadmissibility, (Fig. 10a:)

(13)

Where rN is the number of neighbours of column (j, k), (Fig. 2).

2nd  type mutation is  applied only to x̅,  to  obtain a  further  fitness  improvement.  It  works analogously to 1st  type
algorithm, with the only difference that two neighbouring cells (j, k)-(j, k + 1) of Gi matrix are randomly changed (Fig.
10b), according to the following rule:
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(14)

Fig. (10). Mutation in the 3D case. (a): first type mutation. (b): second type mutation.

Obviously the new pair of integer values (ĩ1, ĩ2) has to be admissible.

In this second case, each mutation iteration consists in trying a mutation of a pair of neighbouring cells in all the
possible directions, i.e. also pairs (j, k)-(j, k - 1), (j, k)-(j - 1, k), (j, k)-(j + 1, k), (j, k)-(j + 1, k + 1), (j, k)-(j - 1, k - 1), (j,
k)-(j + 1, k - 1) and (j, k)-(j - 1, k + 1) are considered.

Nmut 2
nd type mutations and 8 Nmut operations, i.e. all possible pair permutations, are performed. Final result of the

application of both first and second type mutation is a new admissible individual (Fig. 11) x̅iM with improved fitness.

Fig. (11). Typical result of a Nmut loop of first type mutation operations on a 2D individual.

Objective  function  to  maximize  is  the  total  economic  value  of  the  mine.  It  is  worth  noting  that,  once  that  an
admissible Gi(j, k) is selected, ( 4 ) becomes unconstrained by definition:
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(15)

4. NUMERICAL SIMULATIONS, 2D EXAMPLES

In Fig. (12), a 2D block model cross-section is shown, with the corresponding solution obtained by means of the
application  of  the  LG [7]  approach  (numbers  reported  in  correspondence  of  each  cell  are  Pij  coefficients  from the
recursive formula by Lerchs and Grossman [7]). The example is taken from Wright [3] to demonstrate the incapacity of
the moving cone approach to reproduce the optimal open pit shape. In Fig. (13), results obtained using the present GA
are shown. In Fig. (13a), the fitness value of the best individual is shown at successive generations, whereas in Fig.
(13b) the optimal pit outline is traced at the last generation (numbers in Fig. (13b) indicate economic values of the
blocks).

Fig. (12). 2D small scale example 1. Solution by means of the Lerchs and Grossman [7] algorithm.

The following parameters have been used: total number of individuals Nind  = 6, zooming Z%  equal to 50%, total
number of first and second type mutations Nmut = 4, parameter ρ equal to 0.5, maximum number of generations Ngen =
50.

From a comparison between values adopted for all GA parameters and its final performance (Fig. 13), the efficiency
of the algorithm is worth noting. Convergence to the optimal economic value of the pit (18 monetary units) is almost
immediate, even with a micro-GA. The simulation at hand has been rerun 100 times to evaluate repeatability, finding in
2 cases sub-optimality and convergence achieved in the worst case at generation #7.

In Fig. (14), a second 2D small scale example taken from Wright [3] is reported, with the corresponding solution
obtained applying the LG algorithm [7]. Also in this case, small populations have been tested (Nind  = 6), with large
zooming Z% equal to 40% and mutation parameter Nmut = 4. Parameter ρ has been chosen equal to 0.5 with maximum
number of generations allowed Ngen equal to 50.
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Fig. (13). 2D small scale example 1. Solution by means of the GA approach proposed. (a): best fitness value versus  generation
number. (b): ultimate shape of the open-pit mine.

Fig. (14). 2D small scale example 2. Solution by means of the Lerchs and Grossman [7] algorithm.
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Results in terms of best fitness and optimal pit outline are reported in Fig. (15). The same considerations done for
the first benchmark can be repeated here. More than 200 re-runs have been performed, obtaining in the 70% of the cases
an immediate convergence (i.e. after generation #1), 5/100 times subotimality and worst case convergence (14 MU) at
the fourth iteration.

Fig. (15). 2D small scale example 2. Solution by means of the GA approach proposed. (a): best fitness value versus  generation
number. (b): ultimate shape of the open-pit mine.

The third example deals with a medium scale case, relying into the original Section SBHP 860001 of the Sabi Gold
Project  in  Zimbabwe  [1].  A  solution  is  at  disposal  from  [1],  obtained  both  with  the  LG  [7]  procedure  and  the
MCS/MFNN program by Frimpong and Achireko [31].

In  Fig.  (16),  the  optimal  pit  outline  obtained  applying  LG  [7]  approach  is  reported,  whereas  in  Fig.  (17a,  b)
respectively  the  best  individual  fitness  versus  generation  number  and  the  GA  optimal  pit  outline  are  sketched.  A
comparison among Fig. (17b), Fig. (16) and Frimpong et al. [1] results shows the good agreement between the final
optimal profile estimated through the GA and previously presented procedures.
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Fig. (16). 2D large scale example. Solution by means of the Lerchs and Grossman [7] algorithm.

A  relatively  small  population  has  been  used  (Nind  =  40),  with  medium  zooming  Z%  (30%)  and  high  mutation
probability (Nmut = 27). ρ is equal to 0.5 with maximum number of generations allowed Ngen = 50. 200 simulations have
been re-run to investigate repeatability. Convergence always occurred not over the tenth generation, with sub-optimality
obtained  only  4  times.  Time  required  for  the  computations  was  usually  around  8  seconds,  which  appears  a  very
competitive result if compared with other approaches available.

A  synopsis  of  economic  values  obtained  using  GA,  MC  and  LG  algorithms  is  reported  in  Table  1,  for  all  the
examples analyzed. CPU times required for the optimization on a PC equipped with 1 GB Ram and a 1.6 GHz Celeron
Processor are also reported. GA simulations are repeated 100 or 200 times depending on the example, in order to have a
reliable estimation of the algorithm average performance.

Table 1. 2D numerical simulations, comparison among CPU times needed for the optimization using the different numerical
algorithms analyzed and corresponding optimized economic value found at the last iteration.

  Present Algorithm Lerchs and Grossman [7] Moving Cones
  CPU ime[sec] Economic value CPU time[sec] Economic value CPU time[sec] Economic value

Example 1 2.31/3.09 (*) 18 2.44 18 1.12 14 (°)
Example 2 0.88/1.23 (*) 14 0.81 14 0.74 14

Example 3 / SBHP 860001 Sabi Gold Project
Zimbabwe

8/23 6250.8 21 6200 5 6250

(*) best performance /average performance on 100 replicates
(°) fails to reach the optimal solution

(*) best performance /average performance on 200 replicates  
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Fig. (17). 2D large scale example. Solution by means of the GA approach proposed. (a): best fitness value versus generation number.
(b): ultimate shape of the open-pit mine.

4.1. Numerical Simulations, 3D Examples

A small scale 3D open pit mine of dimensions 4 × 7 × 7 (Fig. 18) already analyzed by Wright [3] by means of a
number of dynamic programming approaches is discussed as first 3D example. The solution in terms of economic value
is 35.5 MU [3]. In Fig. (18a and b) respectively, the best individual fitness versus generation number and the open pit
optimized layout (obtained from the best individual at the last generation) are reported. The ultimate open pit layout is
identical to that found by Wright [3] by means of a Koenigsberg algorithm [9] associated with MC. It is worth noting
that, if a Johnson and Sharp [32] approach is used, an inadmissible optimal layout is found with economic value of the
pit  equal  to  41.5  MU.  Therefore,  a-posteriori  manual  smoothing  is  needed  to  both  reduce  pit  monetary  value  and
manage admissible individuals.
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Fig.  (18).  3D  small  scale  example  1.  (a):  Best  fitness  value  at  progressive  generations.  (b):  Open  pit  optimised  layout  (elitist
individual at the last generation).

The GA approach proposed reaches  the  optimal  solution automatically  and efficiently  (in  this  case,  less  than 5
seconds  were  required  for  the  worst  case  simulation).  CPU  times  required  for  the  simulations  with  corresponding
optimal monetary value of the pit are reported in Table 2.

A micro-GA is adopted in this case (Nind = 6), with medium zooming (Z% = 30%) and high mutation probability (Nmut

= 4). ρ parameter is equal to 0.5, with maximum number of generations allowed Ngen = 70. 400 simulations have been
repeated to investigate repeatability. Convergence always occurred not over the tenth generation, with subotimality
found only 2 times.

The  second  example,  Fig.  (19),  relies  on  a  medium  scale  open  pit  composed  by  6  ×  12  ×  13  blocks.  Such
optimization problem has been extensively studied by Wright [3], who fund an optimum monetary value of the pit equal
to 111 MU, obtained using a 3D Dynamic Cone approach. 3D Level Dynamic Path and the 3D Moving Cone method
slightly underestimate the maximum monetary value, providing a solution equal to 100 MU and 105 MU respectively.
Sectional Dynamic Path provides a strongly underestimated optimal monetary value (89 MU).

Determination of the Optimal Open Pit Mines Layout
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Table 2. 3D numerical simulations, comparison among CPU times needed for the optimization using the different numerical
algorithms analyzed and corresponding optimized economic value found at the last iteration.

    Alternative literature methods
  Present Algorithm I II III IV
  CPU time[sec] Economic

value
CPU

time[sec]
Economic

value
CPU

time[sec]
Economic

value
CPU

time[sec]
Economic

value
CPU

time[sec]
Economic

value
Example 1 2.0/4.3 (0) 35.5 3.1 (2) 41.5 (2) - - - - 4.1 (6) 35.5 (6)

Example 2 12.1/14.1(0) 111 11.1 (1) 89 (1) 6.2 (3) 105 (3) 9.1 (5) 111 (5) 13 (6) 100 (6)

Example 3 1451 3250 731 (1) 2991 (1) 392(3) (4) 3250 (3) 991 (5) 3200 (5) 1212 (6) 3200 (6)

(0) best CPU time /average CPU time on 100 replicates
(1): Sectional dynamic path method

(2): Johnson and Sharp without smoothing
(3): 3D moving cone method

(4) 3 different overlapping moving cones were used (ad hoc procedure)
(5): 3-D Dynamic Cone Method

(6): 3-D Level Dynamic Path Method
 

Fig.  (19).  3D  small  scale  example  2.  (a):  Best  fitness  value  at  progressive  generations.  (b):  Open  pit  optimised  layout  (elitist
individual at the last generation).

The  performance  of  the  GA  in  terms  of  best  individual  fitness  at  each  iteration  is  shown  in  Fig.  (19).  For  the
simulations, small populations of 10 individuals, with zooming percentage equal to 30% and high mutation probability
(Nmut = 4) have been used. Also in this case, ρ parameter has been set equal to 0.5 with maximum number of generations
allowed Ngen = 70. Convergence to the optimal solution occurs after 20 iterations (Fig. 19a), requiring only 12 seconds,
underlining again the efficiency of the procedure proposed. 100 simulations have been repeated assuming the same
input  parameters.  Convergence  was  always  reached  before  iteration  #27.  Sub-optimality  occurred  only  for  one
simulation.
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In Fig. (19b), the final open pit layout is reported and corresponds exactly to that provided by Wright [3].

The  final  example  is  a  large  open  pit  of  dimensions  40  ×  40  ×  25,  with  planar  external  profile.  The  main
morphological characteristic of the mine relies in a clustered distribution of blocks with relatively high economic value
(varying from 10 to 20), as shown in Fig. (20). Three separated clusters with positive economic value are present, with
centroids approximately located in correspondence of cells (i, 25, 35), (i, 25, 20) and (i, 12, 10) respectively. For the
remaining blocks, a negative economic value equal to -0.4 is considered, exception made for the superficial blocks row
(i = 1), assumed with null economic value.

Fig. (20). 3D large scale example. Concentration of high value blocks.

From a practical point of view, each cluster could be treated separately by means of three different open pit sub-
problems. Nevertheless, here all blocks have been considered in one step, with the aim of testing the efficiency of the
GA for large scale 3D examples. The optimal economic value is estimated to be around 3250 MU, value calculated by
means of different MCs on three separated sub-problems.

Fig. (21). 3D large scale example. Best fitness value versus generation number.

In Fig. (21) the best individual fitness at successive iterations is shown. After 1200 generations, the optimal result
turns out to well approximate MC results, so demonstrating the GA efficiency for large scale problems.

The optimal outline of the open pit numerically obtained is shown in Fig. (22). Three different excavation zones can
be clearly distinguished,  indicating that  all  clusters  have been mined and the optimal  solution has been reached.  A
detailed analysis of Fig. (22) also intuitively suggests that the utilization of MC is, in this case, adequate.

Determination of the Optimal Open Pit Mines Layout
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Fig. (22). 3D large scale example, open pit optimised layout.

A population with 70 individuals has been used, with zooming Z% equal to 50%, total number of first and second
type mutations Nmut = 20, assuming ρ equal to 0.5 and the maximum number of generations Ngen allowed equal to 2500.

A single GA run required around 24 minutes  to  be performed.  Convergence to the optimum economic value is
acceptable,  even  using  relatively  small  populations.  Simulations  have  been  rerun  50  times  to  test  repeatability,
converging  always  to  the  optimal  solution  (in  the  worst  case  around  generation  number  1350).

An additional large scale example on the same orebody of Fig. (20) has been finally performed making use of a
model with 250000 blocks (Fig. 23). The mine of Fig. (23) has exactly the same characteristics of the previous orebody,
except that its superficial area is around four times larger. High value blocks clusters are concentrated between columns
number  1  and  40  (for  both  indices  j  and  k),  reproducing  exactly  the  situation  of  Fig.  (20).  Populations  with  200
individuals have been used, with zooming Z% = 50%, total number of first and second type mutations Nmut = 100, ρ equal
to 0.5 and Ngen equal to 6500. The outline of the open pit numerically obtained is reported in Fig. (23). As one can note,
it corresponds to the solution found for the open pit with dimensions 40 × 40 × 25. Convergence occurred after 5520
generations to a total economic value of the pit equal to 3170 MU, requiring 11 hours and 20 seconds to run. The fitness
of the best individual at the last generation results in very good agreement with that obtained in the previous case.

Fig. (23). 3D large scale example, simulation with 250000 blocks.
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Finally, a synopsis of economic values obtained and CPU times required using GA and a number of alternative
existing approaches is summarized in Table 2, for all the 3D examples discussed. Analogously to the 2D case, optimal
results provided by the GA approach are obtained at CPU times always comparable with existing approaches.

CONCLUSION

A  genetic  algorithm  for  the  numerical  evaluation  of  optimal  open  pit  mines  layout  has  been  presented.  The
technique exploits a specifically developed zooming strategy and survival of the fittest, based on an elitist approach.
Objective function (fitness) is represented by the economic value of the pit. The reliability of the approach adopted has
been  assessed  through  meaningful  comparisons  with  both  simple  cases  reported  in  the  technical  literature  and
challenging  large  scale  examples  in  two  and  three  dimensions.
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