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Abstract:

Introduction:

Although it is a regular duty of geotechnical engineers to evaluate how much shallow foundation settles in the granular soil, there is no well-
approved formula for this task. The intent of this research is to develop a formula that is adequately simple to be used in routine geotechnical
engineering work but complete enough to address the behavior of granular soil associated with the settlement issue.

Methods:

Cone penetration test and foundation load test data were used to generate a formula that can predict the settlement. Genetic Programming (GP)
based Symbolic Regression (GP-SR) and artificial neural networks were used to develop an optimized formula. Settlements were also calculated
using the finite method and compared to the results of the developed formula.

Results and Conclusion:

Two formulas were developed using SR, and several models were developed using ANN. ANN model 1 has the highest R2 value (0.93) and the
lowest MSE (0.16) among all developed ANN and GP-SR models. FEM settlements were almost double the measured ones in some instances.
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1. INTRODUCTION

The foundation system carrying the loads of any structure
can be either shallow or deep.

Shallow foundations are considered a feasible alternative
because of their cost effectiveness, short construction time, and
environmental  friendliness.  Typically,  their  design  is  domi-
nated not by bearing capacity but by settlement. Because per-
formance data is limited and predictions of settlements inflated,
shallow  foundations  are  frequently  underutilized.  Therefore,
estimating  the  settlement  is  an  important  criterion  to  be
considered  in  the  design  stage  of  shallow  foundations.

Different methods, ranging from purely empirical to comp-
lex nonlinear finite elements, have been tried but has failed to
produce accurate predictions of settlements [1]. Several resear-
chers have studied the behavior of shallow foundations on coh-
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esionless soils [2 - 12]. Most of them had examined how the
results of calculated and field- measured settlements of shallow
foundations are compared to one another.

The goal of this study was to develop formulas to predict
the  settlement  of  shallow  foundations  on  cohesionless  soil
using Genetic Programming (GP) based Symbolic Regression

The  principle  factor  in  predicting  settlement  is  the  sub-
surface exploration data, specifically, its quality and quantity.
Current  in-situ  tests  notably  the  Cone  Penetration  Test,
Standard Penetration (SPT), and Dilatometer Modulus (DMT)
tests  attempt  to  estimate  the  parameters  of  soils  in  the  sub-
surface.  Actually,  in  addition  to  its  strong  theoretical  back-
ground, the CPT has several advantages: speed, economy, near
continuousness, and repeatability. As Robertson [13] pointed
out  that  these  advantages  have  steadily  advanced  the  CPT’s
world-wide  use  and  application.  Furthermore,  CPT  data  is
useful  in  predicting  settlement  behaviors  by  applying  the
methods proposed by Schmertmann [14], Meyerhof [15], and
DeBeer [16].
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(GP-SR)  and  Artificial  Neural  Networks  (ANNs).  CPTs  and
foundation load tests data have been used, leading to a numeri-
cal  formula  that  enables  the  accurate  prediction  of  shallow-
foundation  settlement  on  granular  soils.  To  develop  and
augment the formula, ANNs and GP-SR have been used with a
database compiled from the results  of 44 shallow foundation
field load tests. There is a little application of GP-SR technique
to predict the settlement of shallow foundation, using CPT and
load tests, in the literature.

2. EXPERIMENTAL DATABASE

A  database  was  compiled  from  the  results  of  44  square
shallow foundation load tests (270 data point).  All  load tests
were carried out post ground improvement work using Dyna-
mic  Compaction  (DC)  or  Rapid  Impact  Compaction  (RIC).
Menard and Broise [17] were the first to expound the virtues of
DC, and since then it has become a popular technique because
it  is  simple,  cost-effective,  and reaches to significant  depths.
Moreover, although primarily testing granular fills and sandy
materials, it works well with many other soil types and condi-
tions, as well [18]. RIC applies low energy to compact sandy
soil at shallow depths, thus filling the void between the DC and
shallow compaction methods such as roller compaction [19].

All  tests  were  performed  according  to  the  ASTM
D1196/D1196M-12. Foundations were loaded to 150% of the
design  load.  The  applied  testing  load  was  produced  by  a
hydraulic  jack  that  had  enough  capacity  for  applying  the
maximum  load  needed  and  was  equipped  with  a  precisely
calibrated gauge to point out the magnitude of the applied load.
Reaction  to  the  hydraulic  jack  was  provided  by  a  platform
carrying  concrete  blocks.  The  platform was  supported  by  an
array of secondary steel beams and the main girder. Deflections
(settlements) were measured about the fixed reference beams
using dial  gauges.  Such deflections  were  monitored for  each
loading increment using four dial gauges. The average readings
of the four dial gauges were taken as the settlement for the load
increment. Before load testing, CPTs were performed at each
location to estimate the soil parameters. The data collected at
each test location included the width of the footing (B) in m,
applied  pressure  (P)  in  kPa,  settlement  (S)  in  mm,  and  the
average cone tip resistance (qc) in MPa for a 2B depth below
the footing’s bottom.

Based  on  the  work  by  Lunne  et  al.  [20]  and  Robertson
[13], the soil was classified at each test location according to
CPT  test  results  regarding  Soil  Behavior  Type  (SBT).  The
classifications were either clean sand-to-silty or gravelly sand-
to-sand. It is to be noted that no cohesive soil was found in any
of the test locations. The depth of the water table ranged from
0.5m to 1.75m below the bottom of the footing. This type of
soil has a high permeability, and the pore water pressure is very

low. Therefore, the groundwater table was not considered as an
influencing  factor  in  this  research.  The  groundwater  is  im-
portant in soft, fine-grained soils where in-situ moisture takes a
longer  time  to  dissipate.  Table  1  provides  a  summary  of  the
collected data from each load test.

3. INTELLIGENT COMPUTING

Two  intelligent  computing  techniques,  Artificial  Neural
Networks  and  Symbolic  Regression  (SR),  led  to  the  deve-
lopment of a formula to predict the settlement of the shallow
foundation. The input variables are cone tip resistance, applied
pressure, and footing width. In order to evaluate the developed
formula,  a  performance  criterion  was  established.  Three
statistical measurements were utilized, the Mean Square Error
(MSE),  Mean  Absolute  Error  (MAE),  and  the  coefficient  of
determination (R2), with a goal of developing a formula with
higher R2 value and the least MAE and MSE. The equations of
these performance criteria are given below:

(1)

(2)

(3)

Where  n  is  the  total  count  of  measurements,  ei  is  the
differences  between  actual  (measured)  values  and  predicted
settlement values, Si is actual settlement values, and  is the
average of the measured settlement values.

3.1. Symbolic Regression (SR)

Symbolic  Regression can find mathematical  formulas  by
minimizing  errors.  It  is  a  function-finding  technique  for
modeling  numeric  multivariate  datasets.  It  is  different  from
traditional regression in that it builds mathematical functions
by searching the parameters and different forms of equations
[21,  22].  It  approaches  a  specific  modeling  problem  by
exploring nonlinear equation forms alongside their parameters,
usually finding a mathematical function which can clarify the
relationship between dependent and independent variables [22,
23]. SR is an application of genetic programming, and, because
it  requires  no  special  knowledge  to  create  free-form  math-
ematical models from collected data, it is an appealing option
to  the  standard  regression  method.  A  Genetic  Programming
GP-based  Symbolic  Regression  (GP-SR)  software,  Eureqa
[24], was utilized in this research to develop a formula that can
predict the settlements.

Table 1. Collected data from load tests.

Collected Variable Mean Standard Deviation Min. Max. Range
qc ( MPa) 11.73 1.69 8.57 14.5 5.93

B (m) 2.12 0.24 1.5 3.0 1.5
P (kPa) 141.21 83.03 18.75 375 356.25
S (mm) 4.08 2.21 0.24 11.79 11.55
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Table 2. SR formulas to predict settlement.

No. Formula R2 MSE MAE

1 0.84 1.62 0.44

2 18.3+0.016P+0.0352Bqc
2-2.59qc 0.78 2.13 0.62

A set  of  input  variables  (P,  qc,  B),  with  its  experimental
settlement results (S), was used for the GP-SR. Mathematical
operators  were  defined  for  use  in  the  developed  formula.
Various  combinations  of  operators  and  variables  were  then
generated  via  a  genetic  algorithm  in  order  to  develop  a
symbolic equation that reflects an appropriate approximation.
Developed  equations  were  subsequently  rated  according  to
complexity  and  fit,  based  on  the  R2,  MSE,  and  MAE.  The
results of the symbolic regression analysis are shown in Table
2). Two equations were developed to predict the settlement (S)
using P, qc and B. R2. Values for those models were 0.84 and
0.78. MSE values were 1.62 and 2.13, while the MAE values
were 0.44 and 0.62.

3.2. Artificial Neural Networks (ANNs)

Many  previous  investigations  into  geotechnical  enginee-
ring have used artificial intelligence and ANN [25 - 31].

Shi  et  al.  [32]  offered  a  study  of  neural  networks  for
predicting settlements of tunnels. Using SPT data, Shahin et al.
[33] presented an artificial neural network model designed to
predict the settlement of shallow foundations on cohesionless
soils. Nejad et al. [34] developed an ANN model to predict pile
settlement  based  on  standard  penetration  testing.  The  ANN
developed  by  Tatari  et  al.  [35]  assesses  the  condition  of
culverts  based  on  inventory  data  presented  by  Masada  et  al.
[36,  37].  Tarawneh  [38]  and  Tarawneh  and  Imam  [39]
developed  ANN models  using  dynamic  load  testing  that  can
predict pile setup for three pile types (pipe, concrete, and H-
pile). Tarawneh and Nazzal [40] employed ANN to optimize
the prediction of subgrade resilient modulus design input from
falling weight deflectometer test results.

The functioned approximation techniques of ANNs can be
used in a nonlinear, complex contact nature between input(s)
and output(s). ANN is considered a soft computing method that
imitates  how the human brain processes  information-transfer
[41]. Among the different types of ANNs, the multilayer feed
forward ANN is the most frequently used. It consists of input,
hidden,  and  output  layers  which  are  connected  by  different
connection weights. For the optimum outcome, ANNs should
be trained through learning algorithms, such as the most widely
used back-propagation [42]. The basis for that algorithm is a
gradient descendent optimization procedure that minimizes the
MSE (average mean squared error) between the predicted and
desired values/outputs.

In this research, the ANN model input variables are applied
pressure  (P),  CPT  tip  resistance  (qc),  and  width  of  square
footing (B). The ANN model output is Settlement (S). The data
was  divided  into  three  sets:  training,  cross-validation,  and
testing.  Seventy  percent  of  the  data  points  were  selected  for
training,  15%  for  cross-validation,  and  15%  for  testing  the

network.  The  training  data  points  were  used  to  train  the
network and compute the weights of the inputs. The test data
points established the performance level of the selected ANN
model.  Cross  validation  measured  test-set  error  during  the
period in which the network was going through the training set
[30].

It  is  essential  that  the  data  used  for  training,  cross-
validation, and testing characterize the same population and its
statistical  properties.  Constructing  the  best  model  possible
necessitates a training set that includes all of the patterns that
the  data  contains.  Likewise,  the  test  set  determines  when  to
stop  training;  therefore,  it  should  be  representative  of  the
training  set  and  should  contain  all  patterns  existing  in  the
available  data  [43].  To  achieve  this,  numerous  random
combinations of the training, cross validation, and testing sets
were engaged until a statistically reliable data set was obtained.

Numerous  network  structures,  with  different  numbers  of
hidden layers and nodes in the hidden layer, were trained and
tested  to  find  the  model  with  the  best  performing  network
architecture.  Because  it  has  been  shown that  a  network  with
one  hidden  layer  can  approximate  any  continuous  function
[44], in this research one hidden layer was used. Typically, the
structure  of  ANNs  includes  processing  elements  (PEs),  or
nodes,  that  are  arranged  in  three  layers  input,  output,  and
hidden  (Fig.  1).  Every  PE  in  each  layer  is  joined,  whether
totally  or  partly,  to  other  PEs  by  weighted  connections.  The
input from each PE in the previous layer (Ii) is multiplied by an
adjustable connection weight (wij). The weighted input signals
are  summed at  each  PE,  at  which  point  a  bias  (Ɵi)  is  added.
This  combined  input  (Ii)  is  then  passed  through  a  sigmoidal
transfer function or other nonlinear transfer function to produce
the PE’s output (yi), which provides the input to the PEs in the
next layer. Equations 4 and 5 show this process, and Figs. (1
and 2) describe it.

(4)

(5)

To develop optimal network geometry, ANNs with a single
hidden  layer  and  a  different  number  of  nodes  in  the  hidden
layer were trained with sigmoid (Sig.) and hyperbolic tangent
(tanh)  transfer  functions  for  the  hidden  and  output  layers.
Combinations of  the number of  elements  in  the hidden layer
and types of the transfer function that yielded the most accurate
predictions of settlement (S) are shown in Table 3.

Table 3 shows that model 1 has the greatest R2 value and
the  least  MSE and  MAE values  for  the  testing  data  set.  The
plot of the measured and predicted settlements for the model’s
testing  data  set  is  shown  in  Fig.  (3).  This  model  is  the  best
performer  among  the  developed  ANNs  and  SR.  The
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yi= f(Ii)  
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mathematical  expression  of  the  ANN  algorithm  is  presented
below:

4. VERIFICATION OF THE SELECTED ANN MODEL

A separate shallow foundation three load test was used to
verify  the  selected  ANN  model.  Settlements  were  estimated
using  the  Finite  Element  Method  (FEM)  and  compared  with
the  outcomes  from  the  ANN  model  and  the  measured
settlements  of  those  load  tests.

The load test was performed in agreement with the ASTM
D1196/D1196M-12.  The  tests  were  carried  out  using  2.5m-
wide  footing  on  a  sandy  soil.  Table  4  shows  the  average  tip
resistance  (qc)  within  5m  below  the  bottom  of  the  footing,
pressure, and measured settlements.

4.1.  Settlement  Estimation  using  Finite  Element  Method
(FEM)

Settlements were estimated using FEM. The conventional,
Mohr-Coulomb soil  model  was  used  in  the  analysis  process.

This  elastic  perfectly  plastic  model  relies  on  a  combination
between Hooke’s law and the Coulomb’s failure criterion. That
is, it has five input parameters, including Young’s modulus and
Poisson’s ratio for soil elasticity, angle of friction and cohesion
for  soil  plasticity,  and  the  angle  of  dilatancy.  Soil  input
parameters were estimated based on CPT data as presented by
Robertson [13]. Soil parameters are shown in Table 5. Midas
Soil Works FEM software was utilized to perform the analyses.

A comparison was made between the results of the finite
element analysis and the measured settlements and predicted
values by ANN model as shown in Figs. (4 to 6). Those figures
clearly demonstrate the superior performance of the developed
ANN model over the FEM. Settlements estimated by ANN are
comparable to those measured from load tests. In all tests, FEM
over-predicted the settlements, giving conservative predictions.
FEM settlements are almost double the measured ones in some
cases, as shown in those figures. It should be noted that ANN is
over-predicting  the  settlements  by  a  value  of  less  than  one
millimetre  and  half  millimetre  for  load  test-1  and  2,
respectively.

Fig. (1). Structure of the developed ANNs.

Fig. (2). Structure of a neural cell.
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Table 3. ANN models to predict the settlement (S).

Model No.
Input Nodes

Hidden Layer-1 Output Layer Testing Data
Processing
Elements

Transfer
Function

Processing
Elements Transfer Function MSE MAE R2

1 3 3 Sig. 1 Sig. 0.16 0.2 0.93
2 3 3 tanh 1 tanh 0.21 0.27 0.87
3 3 4 tanh 1 tanh 0.26 0.33 0.82
4 3 5 Sig. 1 Sig. 0.29 0.36 0.79
5 3 6 tanh 1 tanh 0.33 0.41 0.79

Fig. (3). Comparison between measured and predicted settlement for ANN model 1 testing set.

(6)

Where A1, A2, and A3 can be calculated using the equations
below:

(7)

(8)

(9)

Table 4. Load tests information.

Load Test No. B (m) qc ( average of 5m below
footing)

Pressure (kPa) Measured
Settlement (mm)

1 2.5 10.8

56.25 0.76
112.5 1.36
168.75 1.82

225 2.67
281.25 3.1
337.5 5.14
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Load Test No. B (m) qc ( average of 5m below
footing)

Pressure (kPa) Measured
Settlement (mm)

2 2.5 12.84

62.5 0.56
125 1.13

187.5 1.96
250 3.07

312.5 4.04
375 5.27

3 2.5 11.46

50 0.68
100 1.33
150 1.75
200 2.30
250 3.0
300 4.61

Table 5. FEM input parameters.

          Soil Parameter           Values Range
          Soil cohesion, C (kN/m2)           None cohesive soil ( C=0 )

          Soil friction angle, ϕo           33- 40

          Angle of dilatancy ( ψο)           3-10

          Young’s modulus ( kN/m2)           2.5qc

          Poisson’s ratio (μ)           0.3

SUMMARY AND CONCLUSION

This  paper  has  presented  the  results  of  a  study  that  was
conducted to evaluate the use of  SR and ANNs to develop a
formula  that  can  accurately  estimate  settlement  of  shallow
foundations  on  cohesionless  soils.  From  44  square  shallow
foundation  load  tests,  post  ground  improvement,  a  database
was compiled. At all test locations, soil was classified as either
clean sand-to-silty sand or gravelly sand-to-sand. There was no
cohesive soil present in any of the test locations. The depth of
the  water  table  was  0.5m  to  1.75m  below  the  bottom  of  the
footing.

ANN and SR were employed to develop a formula that can
reliably predict the settlement. The input variables were cone
tip resistance, applied pressure, and footing width. To evaluate

the developed formula, a performance criterion was established
using MSE, MAE, and R2. The goal was to develop a formula
with highest R2 value and least MAE and MSE. Two formulas
were developed using SR (Table 2), and several models were
developed using ANN. As shown in Table 3, ANN model 1 has
the  highest  R2  value  (0.93)  and  the  lowest  MSE  (0.16)  and
MAE (0.2) among all developed ANN and SR models.

A separate shallow foundation three load tests verified the
selected  ANN  model.  Further,  settlements  were  estimated
using FEM and compared with the results of the selected ANN
model and the measured settlements of those load tests. In all
tests, FEM over predicted the settlements, giving conservative
predictions. FEM settlements were almost double the measured
ones in some instances.

Fig. (4). Comparison between FEM, ANN, and measured settlements for load test-1.

(Table 4) contd.....
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Fig. (5). Comparison between FEM, ANN, and measured settlements for load test-2.

Fig. (6). Comparison between FEM, ANN, and measured settlements for load test-3.

It can be concluded that the ANN model is a satisfactory
predictor  of  the  settlements  of  shallow  foundation  on
cohesionless soils. A benefit of ANNs is that, once the formula
is trained, it can be utilized as a quick method for settlement
estimation.  Conversely,  the  main  disadvantage  of  ANNs  is
insufficient theory to foster their development and their limited
ability  to  explain  the  method  by  which  they  analyze  the
available data to achieve a solution. It should be noted that the
ANN modeling hinges on experimental data and is applicable
for use in an interpolative sense. As an empirical formula, the
scope of its applicability is controlled by the data used to build
and calibrate the model. To update the model and increase its
accuracy, it is important to include additional data to enable the
model to be re-trained.

Despite the above-mentioned shortcomings, the results of
this  research  point  out  that  ANNs  have  several  significant
powerful and practical benefits that make them a valuable tool
in  predicting  the  settlement  of  shallow  foundations  on
cohesionless  soils.  It  should  be  noted  that  the  developed
formulas  can  only  be  used  for  similar  type  of  soils.
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