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Abstract:

Background:

Agro industrial wastes such as Bamboo Leaf Ash (BLA) and Bagasse Ash (BA) need to be employed so as to replace cement in order to produce
cheaper concrete, which, in turn, save the environment.

Objective:

This research focuses on the compressive strength and slump based on Artificial Neural Network (ANN) and Multiple Linear Regression (MLR)
models for forecasting of compressive strength and slump value for concrete by blending BLA and BA as partial supplementary cement materials
accordingly.

Methods:

Three-layer perceptron was constructed through R (nnet package). A sum total of eleven artificial neural networks were formulated using 214 data
sets attained from 27 laboratory concrete mixtures performed.

Results:

The neural network model forecasted the compressive strength for training, testing and validation with predicted errors of 0.802 MPa and 1.380
MPa. The model over forecasted the compressive strength averagely by 0.644 MPa and 1.905 MPa. The forecasted compressive strength changed
averagely by 2.328% and 3.946%. The average difference between the predicted and experimental values was 0.588 MPa and 1.050 MPa. The
coefficients of determination were 0.961 and 0.905. The MLR model predicted the slump with predictive error values of 6.634 mm and 8.374 mm.
The predicted slump deviated on average by 3.633% and 8.034%. The residual error was 3.075 on 12 degrees of freedom. The multiple R2 and
adjusted R2 were 0.9336 and 0.9115. The P-value was found to be 5.639e-07.

Conclusion:

The results show that ANN and MLR are potent tools for forecasting the compressive strength and slump of concrete blending bamboo leaf ash
and baggage ash. Hence, this contributes towards forecasting of the compressive strength and slump of BLA and BA blended concrete. They
extends  28  days  compressive  strength  usually  found  in  the  literature  to  56  and  90  days  compressive  strength  and  there  was  a  remarkable
improvement as curing age increases. The slump of combined effect of blending BLA and BA at different percentage replacements was tested. In
this study, we used BLA blended with BA to produce concrete which is an innovation.
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1. INTRODUCTION

Concrete is a combination of aggregates and cement which
could be framed to any magnitude and forms of the expected
design  [1].  The  world’s  yearly  manufacturing  of  concrete  is
evaluated  to  be  greater  than  ten  billion  tons  [2,  3].  Cement
manufacturing costs a lot of resources and energy. One ton of
cement manufacturing depletes roughly about 1.7 tons of raw
materials, 4 Giga Joules (GJ) of energy, and discharges roughly
0.73 – 0.99 tons of carbon dioxide into the atmosphere [2, 4 -
6].  As  a  result,  the  concrete  sector  is  now  finding  means  to
exploit alternative elements for concrete production in order to
attain  sustainable  growth  and  to  reduce  the  harsh
environmental  effect  [7].

Agro-industrial  wastes  have  been  employed  to  replace
cement  so  as  to  produce  affordable  concrete.  These,  in  turn,
stimulates solid waste management and conservation of natural
resources [8 - 15]. Other waste materials such as sewage sludge
ash [16], nano-silica particles [17], blast furnace slag and nano
silica  hydrosols  [18],  calcined  sewage  sludge  ash  [19],  nano
silica and sewage sludge ash [20] have been used for replacing
cement  at  different  percentage  replacements  for  producing
concrete.  Bamboo leaf ash (BLA) and baggage ash (BA) are
part of the agro-industrial wastes that are utilised as promising
cement replacement materials.

Traditional  concrete  is  a  mixture  of  water,  cement,  fine
aggregates,  and  coarse  aggregates  [7].  The  features  of  the
concrete are affected by various factors like the type of cement,
water-cement  ratio,  water  content,  quantity  and  quality  of
aggregates  [21].  The  conventional  method  employed  in
modelling the impacts of these factors on fresh and mechanical
features of concrete begins with an assumption of an analytical
equation [22]. Meanwhile, the method does not capture the real
scenario  when  some  of  the  concrete  components  are  not  the
traditional elements and when the assumptions are wrong.

Slump and compressive  strength  are  important  fresh  and
mechanical  features  of  concrete  and  play  a  vital  role  in  the
design  of  concrete  entities  [23].  Workability  is  the
characteristic of concrete which ascertains the efforts needed
for compaction, finishing, and insertion with the lowest loss of
uniformity.  The  final  compressive  strength  of  concrete  is
mostly achieved after curing age of 28 days which serves as a
point of reference to define the strength at the subsequent age
[24,  25].  Methods  like  mechanical  modelling,  analytical
modelling,  artificial  intelligence,  multiple  linear  regression,
and other statistical methods [7, 25] have been used lately for
forecasting  the  slump  and  strength  of  concrete.  An  artificial
intelligence  technique  which  has  flourished  well  and  grown
swiftly  in  engineering  practices  is  Artificial  Neural  Network
(ANN) [26, 27]. The artificial neural network has been used in
lots  of  civil  engineering  practices  such  as  groundwater
monitoring, concrete strength forecasting, material behaviour
modelling,  discovery  of  structural  damage,  concrete  mix
apportioning,  and structural  system recognition  [28,  26,  29  -
31].
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Numerous  research  works  [7,  21,  29,  30  -  34]  have
employed artificial neural network for forecasting the strengths
of  various  kinds  of  concrete.  Duan  et  al.  [7]  developed  an
artificial neural network model using a single hidden layer. The
artificial  neural  network  model  forecasted  the  recycled
aggregate concrete strength accurately. Chopra et al. [21] also
used  sigmoid  activation  function  and  Levenberg-Marquardt
training function for predicting compressive strength based on
ANN  modelling.  They  found  that  the  sigmoid  activation
function and Levenberg – Marquardt were the best forecasting
tools. ANN predictive model was also constructed by Hossein
et  al.  [28]  for  forecasting  the  compressive  strength  of  the
recycled  aggregate  concrete.  The  outcome  of  their  studies
revealed that 0.0044MPa at epoch 5 was the best performing
validation. A multi-layer feed-forward artificial neural network
architecture  known  as  5-10-1  was  developed  by  Kalra  et  al.
[35] for the purpose of forecasting the compressive strength of
concrete. Based on their research, the suitable validation was
noted  at  epoch  40  and  10.99  MPa  as  its  mean  squared  error
value. Jamaladin et al. [36] forecasted the compressive strength
of  high-performance  concrete  through  ANN.  They  studied
thirty ANN architectures and found that 8-10-6-1 was the best
architecture  for  their  model.  Their  model  was  capable  of
simulating experimental results correctly. Getahun et al. [37]
also  employed  ANN  predictive  modelling  for  prediction  of
compressive strength and tensile strength using rice husk ash
and reclaimed asphalt  aggregate  concrete.They used  15-15-2
architecture which is multi-layer feed-forward. Their actual and
predicted results were very close. Heidari et al. [38] used ANN
model  in  order  to  predict  strength  of  concrete.  It  was
discovered  that  the  real  values  and  the  predicted  values
produced by neural network were closer and absolutely correct.
ANN  model  was  also  constructed  by  Bharathi  et  al.  [39]
towards the forecasting of hardened and fresh components of
self-compacting  concrete  by  partial  replacement  of  cement
with  fly  ash.

Multiple Linear Regression (MLR) on the other hand is a
statistical method which utilises several independent variables
in order to forecast the outcome of a dependent variable. The
basic  work  of  MLR  is  to  model  the  relationships  that  exists
between independent variables and dependent variables. It has
been  used  in  civil  engineering  for  slump  prediction  and
strength  prediction  as  well  [40].

Charhate  et  al.  [40]  utilised  MLR  for  the  purpose  of
predicting  the  slump  of  concrete  grade  of  M20,  M25,
M30,M35,  M40,  M45,M50,M60,  and  M70.  The  predicted
slump value obtained for each grade of concrete was closer to
the actual slump value. Yeh [41] used MLP for predicting the
slump flow of high-performance concrete, the outcome of the
research  indicated  that  the  differences  between  the  actual
slump  and  forecasted  slump  were  minimal.

The  key  factor  for  ANN’s  wide  applicability  and  accep-
tance is its tendency and efficacy in resolving complicated and
complex engineering setbacks [26]. Basically, the feed-forward
network (multi – layer perception) has been frequently utilised
in ANN architecture [42]. Feed-forward network consists of an
array of extensively lateral neurons that are computational. The
nodes are linked to each other by connected weights and collect
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the input signals based on the neurons connected together with
it. Succeeding layers of the nodes obtain input from preceding
arrays. That is, the output for the nodes of every array provides
inputs  to  the  nodes  of  the  next  layer.  The  artificial  neural
network  processing  components  are  analogous  as  compared
with neurons of human brain which consist of computational
segments  grouped  in  layers  [22].  Furthermore,  ANN has  the
ability to unveil amazing potentials in the modelling of human
brains [43].

There  is  a  need  to  train  and  design  the  ANN  accurately
with  data  with  respect  to  the  challenge  so  as  to  obtain  the
required purpose. The log - sigmoid, purelin, and tan-sigmoid
are  the  most  famous  activation  functions  [44].  Besides  the
output  and input  neurons,  activation  function  is  a  key which
alters  the  performance  of  an  ANN  [45].  Backpropagation
algorithm has been largely employed for feed-forward network
training [37].

The  key  data  was  obtained  via  laboratory  experimental
work for developing a compressive strength forecasting model
through ANN and MLP. The combination of BLA and BA to
produce  concrete  is  a  new  initiative,  as  no  study  has  been
performed so far in this aspect. The features and constituents of
concrete  blending  BLA  and  BA  are  clearly  not  the  same  as
normal  concrete,  this,  in  turn,  make  it  difficult  to  forecast
compressive  strength  through  statistical  and  analytical
modelling techniques . The statistical model approach adopts a
parametrization and premeditated pattern. Also, the analytical
method is normally restrained due to some complications; it is
either pointless or unduly rigorous to be formulated as a result
of  its  illogical  postulations.  Conversely,  ANN model  has the
ability to represent non – linear compounded relations between
variables through examining vital features inherent in the data
[37]. Furthermore, ANN can produce undesirable outcomes to
impediments such as errors in the input variables which render
it  deficient.  Hence,  it  has  the  ability  to  generalize  and  learn
from  occurrences  and  records  [39].  MLP  has  the  ability  to
represent linear compounded relations which exist among the
variables correctly [36].

The contributions made in this paper are: (1) To affirm the
efficiency  of  ANN  and  MLR  models  in  forecasting  the
compressive  strength  and  slump  of  BLA  and  BA  blended
concrete  (2)  Previous  researchers  worked  on  28  days
compressive strength. However, in this study, 56 and 90 days
compressive  strength  was  tested  using  ANN,  there  was  a
remarkable  improvement  as  curing  age  increases.  Also,  the
slump  of  the  combined  effect  of  blending  BLA  and  BA  at
different  percentage  replacement  was  tested  using  MLR  (3)
Previous researchers used different pozzolans and admixtures
to produce concrete. However, in our study, we used BLA and
BA to produce concrete.

2. CONSTITUENT ELEMENTS AND PROCEDURES

2.1. Elements Used

Elements  employed  in  this  studies  consist  of  a  super-
plasticizer,  Baggage  Ash  (BA),  Coarse  Aggregate  (CA),
Bamboo  Leaf  Ash  (BLA),  water,  Fine  Aggregate  (FA),  and
Ordinary  Portland  Cement  (OPC).  All  the  materials  utilised

were  obtained  from  different  counties  in  Kenya.  Coarse
aggregate and fine aggregate were acquired from Mlolongo and
Masinga sited in Machakos county, Kenya. Sugar cane ash was
fetched  from  sugar  manufacturing  industry  situated  in  the
Kakamega province of Kenya.The leaves of the bamboo were
collected in a forest (MAU) situated in Kenya. The cement, as
well as superplasticizer, was obtained from the central part of
Kenya. Potable water from the tap was utilised.

2.2. Procedures

Table  1  shows  the  procedures  utilised  for  this  research
work; all the methods shall be discussed in the next section.

Table 1. Procedures for testing.

          Constituent Elements Tests
          Conducted Test           Standard Employed
          Sieve analysis (BLA, BA)           ASTM D7928-7
          Sieve analysis (Aggregates)           ASTM C33
          BA, BLA and cement SG           ASTM 188
          Fineness modulus           ASTM C136
          Aggregate water absorption           BS EN 1097
          Voids in aggregate           ASTM C29
          Aggregate density           ASTM C29

2.2.1. Test Methods for Material Classification

The grading technique for aggregates was conducted based
on ASTM C 33 [46] concept by utilising sieves in agreement to
BS  ISO  3310-2  (2013)  [47].  Aggregates’  selection  was
accomplished  based  on  BS  EN  932-1  (1997)  [48]  batching
conditions. The leaves of the bamboo were dried in the sun to
eliminate the liquid content present in it. Afterward, they were
then subdued to burning in order to get rid of organic materials
that  might  be  present  in  them.  Hence,  calcination  operation
took  place  through  muffle  furnace  at  650°C  for  2  hours  as
detention time. After cooling, it was sieved through sieve size
of  0.15  mm.  The  baggage  ash  was  fetched  from  the  sugar
industry and was also sieved with 0.15 mm sieve size.

2.2.2. Mix Operation and Design Mix

A total of 25 mixes were prepared. The details of the mix
distributions  are  stated  in  Table  2.  The  cement  was  partly
substituted  using  5%,  10%,  15%,  and  20%  of  BLA  and  BA
through  weight  of  the  total  cement.  BLA  was  kept  constant
ranging from 5%,  10%,  15%,  to  20%.  BA varied  from 5% -
20%  and  was  blended  with  the  BLA  at  each  level  of
replacement.  The  mixtures  were  prepared  using  195  kg/m3

water  and  a  constant  water  binder  ratio  (w/b)  of  0.5.
Furthermore,  0.8%  by  cementitious  material  weight
superplasticizer was employed for the mixes. Manual mixing
was carried out as stipulated in BS EN 1881-125 (2013) [49]
and was taken care of by a tool to shield against the dispersion
of  liquid  and  cementitious  materials  at  the  mixing  stage.
Chemical  analysis  for  BA,  cement,  and  BLA was  conducted
through x-ray diffraction (XRD) equipment in line with BS EN
196-2 (2013) [50]. The cement, baggage ash, and bamboo leaf
ash  were  obtained  based  on  ASTM  C188  (2016)  [51].  The
concrete  design  mix  for  grade  25  was  carried  out  with
reference  to  BS  EN  206  (2014)  [52]  as  well  as  BS  8500  -2
(2012) [53].



 
(a) normal concrete                              (b) bamboo leaf ash concrete                (c)baggash ash concrete 
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and retained on the  sieve  based  on ASTM – 33 (2003)  [46].
Fig.  (2)  shows  the  gradation  of  coarse  aggregates.  It  reveals
that the envelope of the curve was within the curve limits as
stated according to ASTM – 33 (2003) [46]. Almost 90% of the
coarse aggregates fall within 9.5mm to a value of 25mm. Fig.
(3) shows the distribution in terms of particle size of the BLA.

From Fig. (3), it can be observed that particles of roughly
about  20% lie  between 1  µm -  2  µm,  and also  80% of  these
particles lie between 2 µm - 150 µm, conforming to standards
of ASTM – D7928 (2017) [54]. This increase the bamboo leaf
ash water content and surface area . The particle size for BLA
utilised  for  this  study  was  150  µm.  The  particle  size
distribution of BA is illustrated in Fig. (4). Based on the Fig.
(4),  approximately 29% of the particles lie within 2 µm - 20
µm. Also, 71% lie between 20 µm -70 µm which conform to
the ASTM – D7928 (2017) [54]. As a result, the liquid content
as well as the surface area of the baggage ash was raised. The
particle size of baggage ash used in this study was 150 µm. The
modulus  in  terms  of  fineness  for  the  fine  aggregate  was
estimated  to  be  2.55  and  conformed  to  ASTM  -C33-  (2003)

[46]  which  stated  that  fineness  modulus  should  lie  between
2.3-3.1.The fine aggregate silt content was found to be 4.67%,
conforming to requirements stipulated in ASTM – C33 (2003)
[46]  which  should  not  exceed  5%.  Specific  gravity  2.48  and
2.43  of  coarse  aggregates  and  fine  aggregates  met  the  range
stated  in  ASTM  –  33  (2003)  [46]  between  2.4  –  2.9,
respectively. Additionally,  the bulk density (rodded) of 1577
kg/m3 and 1495kg/m3 for fine aggregates and coarse aggregates
lies  between  the  limit  of  1200  -  1750  kg/m3  according  to
ASTM – C33 (2003) [46] specifications. The water absorption
for aggregates was 3.95 and 3.27 which conformed to ASTM –
C33 (2003) [46], not reaching beyond 4. The specific gravity of
2.10 and 2.79 for BA and BLA was 33% and 11%, being lower
as  compared  to  cement.  Furthermore,  the  bulk  density  of
baggage ash and bamboo leaf ash was about 32% and 33% to
that  of  OPC.  The lesser  values  obtained in  reference  to  bulk
density  and specific  gravity  of  BA and BLA could  lead  to  a
reduction in the density of concrete. The highest particle size of
OPC, BA, and BLA was obtained to  be 150mm, 90mm, and
150mm, respectively. Table 4 shows the chemical percentages
for BA, BLA, and cement.

Table 3. Physical and mechanical structures of elements.

Structures Cement Coarse Aggregate Fine Aggregate BLA BA
Specific gravity (bulk) based on SSD 2.56 2.52
Specific gravity (bulk) 3.12 2.48 2.43 2.79 2.10
Apparent specific gravity 2.80 2.68
Fineness modulus 2.55
Silt content (%) 4.67
Water absorption (%) 3.27 3.95
Loose bulk density (kg/m3) 1398 1417.5 1456 365 359

Rodded bulk density (kg/m3) 1435 1495 1577 479 471
Voids in loose aggregate (%) 45.75 39.33
Voids in rodded aggregate (%) 39.52 34.31
Maximum particle size (mm) 0.09 20 5 0.15 0.15
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Fig. (4). Distribution in terms of particle size of BLA in conformity
with ASTM – D7928 benchmark.

Fig. (5). Distribution in terms of particle size of BA in conformity with
ASTM - D7928 benchmark.

Table  4.  Percentages  of  chemical  anatomy  for  BLA,  BA,
cement.

Chemical Anatomy (%) BLA BA Cement
Silica (SiO2) 69.112 70.40 20.600
Calcium Oxide (CaO) 10.814 2.90 62.927
Aluminium (Al2O3) 2.523 3.54 5.985
Iron Oxide (Fe2O3) 1.741 3.93 3.341
Phosphorus Oxide (P2O5) 1.525 2.17 0.639
Chloride Oxide (Cl) 0.670 0.25 0.151
Sulphur Oxide (S) 0.406 0.27 2.622
Manganese Oxide (Mn) 0.245 0.20 0.129
Potassium Oxide (K2O) 4.814 4.67 0.266
Loss of Ignition (LOL) 8.15 11.67 3.34

The chemical analysis of BA, BLA, and OPC is shown in
Table 4. XRD was used to perform the test. According to the
results illustrated in Table 4, the percentage of CaO discovered
in BLA [55] was higher than BA. However, CaO discovered in
cement  was  larger  than  BA  and  BLA.  The  CaO  is  the  main
mechanism behind the establishment of tricalcium silicate and
dicalcium silicate which ionises with water to produce about
calcium – silicate - hydrate (C-S-H) and it was believed to be
the  dominant  driver  in  terms of  progression of  strength.  The

percentage composition of SiO2  + Al2O3  + Fe2O3  for BA and
BLA was found to be 77.87% and 73.38% respectively which
exceeded  70%  minimum  condition  based  on  ASTM  C618
(2008) [56] for a pozzolana. Likewise,  the LOL of BLA and
BA  was  greater  as  compared  to  cement.  It  fell  between  the
limit  of  12%  indicated  by  ASTM  C618  (2008)  [56].  The
physical and chemical features of the superplasticizer adopted
in this study are shown in Table 5.

Table 5. Attributes for superplasticizer.

Attributes Superplasticizer
Coloration Light brown liquid
pH 5.6
Bulk density (kg/L) 1.06
Chemical Polycarboxylate ether
Dose 0.2 – 2% by weight of cement

4. ARTIFICIAL NEURAL NETWORK

4.1. Artificial Neural Network’s Framework Scheme

Three-layer  perceptron  was  constructed  through  R  (nnet
package).  A  total  of  eleven  artificial  neural  networks  were
formulated  using  214  data  sets  attained  from  27  laboratory
concrete  mixtures  made.  The neural  network consisted  of  an
input layer, a hidden layer, and an output layer. A total number
of 14 input variables (cement, water, BLA, BA, water cement
ratio (w/c), fine aggregates, coarse aggregates, aggregate size,
curing  age,  specific  gravity  coarse,  specific  gravity  fine,
fineness  modulus,  water  absorption  coarse,  water  absorption
fine)  were considered for  the  analysis.  However,  curing age,
BLA,  BA,  and  cement  were  the  most  viable  variables
employed for the analysis. The compressive strength was the
dependent  variable.  Artificial  neural  network  model
independent  and  dependent  characteristics  are  displayed  in
Table  6  (Eq.  1).

(1)

4.2. Training of Neural Network

The 11 neural networks formulated were trained by hidden
neurons and activation function. The activation function used
for training was linear activation function.

(2)

Back propagation was utilised for the purpose of networks
training.  The  training  process  was  performed  in  such  a  way
that, each layer was trained sequentially through forward and
backward estimations.  The algorithm of  the backpropagation
consist of two major stages [31].

4.3. Model Efficiency Assessment

The artificial  neural  network model  were trained using a
training  data  set.  Testing  and  validation  were  performed  on
testing  and  validation  data  set,  and  degree  of  precision  was
computed  through the  forecasted  errors  accrued from testing
and  validation  sets.  The  forecasting  accuracy  of  the  ANN
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model was evaluated using the mean square error (MSE), root
mean square error (RMSE), mean absolute error (MAE), mean
absolute  prediction  error  (MAPE),  and  coefficient  of
determination  (R2)  by  using  Eqs.  (2-6)  accordingly.

Table  6.  ANN  model  independent  and  dependent
characteristics.

          Model Features           Limit
Minimum Maximu

m
          1. input factors
          Water, Kg/m3           -           193

          Cement, Kg/m3           312           390

          BLA, Kg/m3           19.5           78

          BA, Kg/m3           19.5           78
          W/C Ratio, %           -           0.5

          Coarse Aggregate, Kg/m3           -           993

          Fine Aggregate, Kg/m3           -           662
          Aggregate Size, mm           20

          Curing Age, days           28           90
          Specific Gravity Coarse, %           -           2.56
          Specific Gravity Fine, %           -           2.52

          Fineness Modulus           -           2.66
          Water Absorption Coarse, %           -           3.27
          Water Absorption Fine, %           -           3.95

          2. Intended Output Parameters
          Compressive Strength, MPa           15.8           38.5

(3)

(4)

(5)

(6)

Where a is the observed value; p is the forecasted value, n
represents the concrete sample numbers.

4.4. Feature Relative Importance

Feature  importance  analysis  is  performed  in  order  to
evaluate the relative impact/significance of input variables on
the  output  of  the  artificial  neural  network’s  compressive
strength forecasting model. The determination of the effect of
input parameters on the output is regarded as complex in ANN
[28, 57]. In this research, the relative feature importance was
performed  on  the  testing  and  validation  data  set  using  R
statistical  software.

5. ARTIFICIAL NEURAL NETWORK ARCHITECTURE

The  initial  essential  phase  for  establishing  an  artificial

neural  network  model  is  ascertaining  the  ANN  architecture.
Meanwhile,  there  is  no  ground  rule  for  choosing  the  best
artificial  neural  network  architecture,  which  still  requires
further  study  [26,  58].  Thus,  following  numerous  attempts
performed, ANN architecture depicted in Fig. (5) was chosen.

The analysis was performed using R (nnet package), and
four input variables,  five neurons,  one hidden layer,  and one
output were adopted. I 1- I 4 connotes the input variables for
the model, B1- B2 stand for bias or threshold introduced during
the learning process, H 1- H5 represent the neurons and hidden
layer  used,  and  C.S.  is  the  output  layer  which  represents
compressive strength. A total of 214 data sets were used. The
data  sets  were divided into  two sets  and 67% of  the  data  set
was used as training set i.e. 144 data while 33% of the data set
was  used as  testing and validation i.e.  70  data.  The training,
testing and validation data were randomly selected from 28, 56,
and 90 days compressive strength values.

5.1. Forecasted Compressive Strength

The compressive strength results produced by the model in
terms of training, testing and validation were in close range as
compared to the actual or experimental values. The visual plots
given in Figs. (6 and 7) are the in-sample and out- sample of
the actual and predicted values. The effectiveness of the model
was  assessed  through  model  precision  mechanism  shown  in
Tables 7 and 8.

Fig (6). ANN architecture.

Fig (7). Plot of actual and predicted results (training).

Table  7.  ANN  compressive  strength  predictive  model
accuracy  measures  (Training).

Model Performance
Predicted

Compressive
strength

MAE
[MPa]

MSE
[MPa]

MAPE
[%]

RMSE
[MPa]

R2

0.588 0.644 2.328 0.802 0.961
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Table  8.  ANN  compressive  strength  predictive  model
accuracy  measures  (testing  and  validation).

Model Performance
Predicted

Compressive
strength

MAE
[MPa]

MSE
[MPa]

MAPE
[%]

RMSE
[MPa]

R2

1.050 1.905 3.946 1.380 0.905

The  ANN  model’s  coefficient  of  determination  for  both
predicted  and  actual  values  for  the  training  was  found  to  be
0.961 while that of testing and validation, it  was 0.905. This
shows that there is a strong correlation between the actual and
predicted values in both the cases. The ANN model forecasted
the compressive concrete strength having RMSE of 0.802 MPa
for training, while RMSE for testing and validation was 1.380
MPa. This indicated that the differences among the forecasted
and actual compressive strength values were negligible in both
the cases. The MSE for training was 0.644 MPa and 1.905 MPa
for testing and validation, respectively. This signifies that the
model over forecasted the compressive strength averagely by
0.644  MPa  and  1.905  MPa.  The  MAE  for  the  training  was
estimated  to  be  0.588  MPa  which  stands  for  the  average
difference between the predicted and actual values. The MAE
for  testing  and  validation  was  found  to  be  1.050  MPa,
indicating  that,  the  average  difference  between the  predicted
and  actual  values  was  minimal.  MAPE  for  the  training
indicated  that  the  forecasted  compressive  strength  changed
averagely by 2.328% from the actual values. While MAPE for
testing  and  validation  was  3.946%  i.e.  the  forecasted
compressive strength deviated averagely by 3.946% from the
actual  values.  The  visual  plots  shown  in  Figs.  (6  and  7)
distinctly  display  the  forecasted  compressive  strength  values
which were in close conformity as compared to the actual or
experimental values. Its supports that the model has the ability
to replicate the actual compressive strength results with great
precision.

5.2. Relative Feature Importance Analysis

The  input  features  consist  of  details  concerning  the
expected outputs. Nevertheless, some features might seem to
be insignificant which in turn leads to stagnancy in the model.
Insignificant features make the training algorithm dummy and
noisy. Insignificant features do not impact extra details to the
model  and  can  result  in  deterioration  in  terms  of  learning
algorithm performance. The relative feature importance of each
input  feature  was  built  on  the  testing  and  validation  data  set
using R statistical software as shown in Fig. (8).  The feature
relative  importance  analysis  results  obtained  indicated  that
curing age is the most significant, followed by bamboo leaf ash
(BLA), baggage ash (BA), and cement.

6. MULTIPLE LINEAR REGRESSION

Multiple linear regression (MLR) is a statistical tool which
predicts  the  outcome  of  a  dependent  variable  using  many
independent  variables.  It  models  the  relationship  between
independent  and  dependent  variables.  The  analysis  was
performed using R statistical  software.  The MLR model was
fitted  to  several  independent  variables  like  bamboo  leaf  ash
(BLA),  baggage  ash  (BA),  water,  cement,  coarse  aggregate

(C.A), fine aggregate (F.A), water binder ratio (W/B), water to
solid  ratio  (W/S),  total  aggregate  –to-  binder  ratio  (TAB),
nominal aggregate size (NS), and superplasticizer (SP). Water,
C.A, F.A, W/B, TAB, NS and W/S were, however, found to be
insignificant.Therefore,  the  slump  data  was  fitted  to  only  5
independent  variables  namely:  Cement,  BA,  BLA,  SP1  and
SP2. The data was subdivided into two sets. The first 17 values
were used as training data and the last 8 values were used as
the test and validation data. The MLR model input and output
characteristics are shown in Table 7.

Fig. (8). Plot of actual and predicted results (testing and validation).

Table 9. Multiple linear regression model independent and
target features.

Model Features Limit
1. Input Variables Minimum Maximum
Water, W [kg/m3] - 195

Cement, C [kg/m3] 312 390
Bamboo Leaf Ash, BLA [kg/m3] - 78

Baggash Ash, BA [kg/m3] - 78
Coarse aggregates, CA [kg/m3] - 993

Fine aggregate, FA [kg/m3] - 662
Water to cement ratio, W/C - 0.50

superplasticizer 1.248 1.56
Water binder ratio, W/B - 0.36
Water to solid ratio, W/S - 0.09

Total aggregate –to- binder ratio, TA/B - 3.03
Nominal aggregate size, NS [mm] - 20

2. Desired Output Parameters
Slump [mm] 40.5 80

6.1. Best Fitted Slump Model

Out  of  the  5  independent  variables  chosen,  the  best
combination of variables that gives the smallest AIC (Akaike
information  criterion)  was  chosen  as  the  best  model.  Step
regression  was  utilised  to  check  the  best  combination  of
independent variables that gave the smallest AIC. The results
of the step regressions are given in Eqs. (7 and 8).

(7)

AIC = 44.01

(8)

AIC = 42.27

𝑆𝑙𝑢𝑚𝑝 = 𝐶𝑒𝑚𝑒𝑛𝑡 + 𝐵𝐿𝐴 + 𝐵𝐴 + 𝑆𝑃1 + 𝑆𝑃2                                                                                   

 

𝑆𝑙𝑢𝑚𝑝 = 𝐶𝑒𝑚𝑒𝑛𝑡 + 𝐵𝐿𝐴 + 𝐵𝐴 + 𝑆𝑃1                                                                                                
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From the analysis above, the best model was found to be
the  one  that  had  Cement,  BA,  BLA and  SP1 as  independent
variables. The model was fitted and the results are summarized
in Table 8. Thus, the fitted model is given in Eq. (9).

(9)

Table 10. Best fitted slump model analysis.

Coefficients Estimate Std. Error t value P-Value
(Intercept) -333.7990 50.7215 -6.581 2.61e-05

Cement 1.0071 0.1310 7.689 5.63e-06
BLA 0.8365 0.1500 5.578 0.00012
BA 0.9391 0.1171 8.019 3.67e-06
SP1 6.6713 2.378 2.805 0.01591

From the P- values in Table 10, it can be seen that all  the
parameters are significant at 5% level of significance. From the
results, we can also see that all the independent variables are
positively correlated to slump. Hence, an increase in any of the
independent variables would increase the slump value.

6.2. Predicted Slump

The  slump  results  produced  by  the  model  in  terms  of
training, testing and validation were very close as compared to
that  of  actual  or  experimental  values  based  on  visual  plots
given  in  Figs.  (9  and  10).  The  accuracy  of  the  model  was
determined by a model precision tool illustrated in Table 9.

Fig. (9). Relative feature importance analysis.

Fig.  (10).  Comparison  between  actual  and  predicted  slump  results
(training).

Table 11. MLR slump predictive model accuracy measures.

Model Performance
Predicted
Slump
(training)

Multiple
R2

Adjusted
R2

Residual
error

RMSE
[mm]

MAPE
[%]

0.9336 0.9115 3.075 6.634 3.633
Predicted
Slump (testing
and validation)

- - - 8.373 8.034

Fig.  (11).  Comparison  between  actual  and  predicted  slump  results
(testing and validation).

CONCLUSION

In  this  paper,  multiple  linear  regression  (MLR)  and
artificial  neural  network  (ANN)  were  used  to  forecast  the
slump and compressive strength of concrete, respectively. The
ANN model forecasted the compressive strength for training,
testing and validation with a predicted error (RMSE) of 0.802
MPa  and  1.380  MPa.  The  ANN  model  over  forecasted  the
compressive  strength  averagely  (MSE)  by  0.644  MPa  for
training  and  1.905  MPa  for  testing  and  validation.  The
forecasted compressive strength changed averagely (MAPE) by
2.328% for training and 3.946% for testing and validation. The
average  difference  between  the  forecasted  and  experimental
values (MAE) was 0.588 MPa for training and 1.050 MPa for
testing  and  validation.  The  coefficient  of  determination  (R2)
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𝑆𝑙𝑢𝑚𝑝 =  −333.7990 + 1.0071 ∗ 𝐶𝑒𝑚𝑒𝑛𝑡 +

0.8365 ∗ 𝐵𝐿𝐴 + 0.9391 ∗ 𝐵𝐴 + 6.6713 ∗ 𝑆𝑃1   

The  MLR  model’s  multiple  R2  and  adjusted  R2  for  both
predicted  and  actual  values  were  0.9336  and  0.9115,  which
indicated a strong correlation between the actual and predicted
values  (Table  11).  The  residual  error  for  the  model  was
estimated to be 3.075 at 12 degrees of freedom. This connotes
that the difference between the observed values and forecasted
values was not much significant. The MLR model predicted the
slump  by  an  RMSE  value  of  6.634mm  for  training,  while
RMSE  for  testing  and  validation  was  8.373mm.  This  means
that  the  differences  between  the  predicted  and  actual  slump
values were very small. MAPE for the training implies that the
forecasted  slump  values  shifted  on  average  by  3.633%  from
actual  data  values.  MAPE for  the  testing  and  validation  was
8.034% i.e. the predicted slump changed on average by 8.034%
from the actual data. Furthermore, the visual plots illustrated in
Fig. (10 and 11) clearly show that the predicted slump values
were  very  close  as  compared  to  the  experimental  or  actual
values. Therefore, the model has the tendency to duplicate the
actual slump results with moderate accuracy.
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was 0.961 for training and 0.905 for testing and validation. The
curing  age,  BLA,  BA,  and  cement  contributed  immensely
towards  the  ANN model  output.  The MLR model  forecasted
the slump with predictive error (RMSE) values of 6.634 mm
for  training  and  8.374  mm  for  testing  and  validation.  The
predicted  slump  deviated  (MAPE)  averagely  by  3.633%  for
training  and  8.034%  for  testing  and  validation.  The  residual
error was 3.075 at 12 degrees of freedom. The multiple R2 and
adjusted R2 were 0.9336 and 0.9115 respectively. The P-value
was found to be 5.639e-07 which is less than 0.05. Hence, the
MLR  model  is  a  good  fit  at  5%  level  of  significance.  The
superplasticizer  (SP1+),  BLA,  BA,  and  cement  contributed
greatly towards the MLR model output.

ANN  was  able  to  forecast  accurately  the  28,  56  and  90
days  compressive  strength.  MLR  was  able  to  forecast
accurately the slump of the concrete. Our work was compared
favourably  the  work  of  Getahun  et  al.,  (2018)  at  28  days
compressive strength, but the model in this study outperformed
their model in terms of 56 and 90 days compressive strength.
This is in line with what is found in the literature (compressive
strength  increases  as  curing  age  increases).  Comparing  the
slump result  (R2  =  0.9336,RMSE = 6.634)  with  the  result  of
Yel, 2007 (R2  = 0.8429,RMSE = 9.00), our model performed
better.
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