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Abstract:

Background:

Escalation of industrial processes continues to increase the concentrations of Cr(VI) in wastewater above permissible discharge limits. Persistent
exposure to Cr(VI)may result in deleterious effects on human health, aquatic life, and the environment. Laboratory-scale adsorption studies have
proven effective in achieving the low treatment levels demanded by statutory authorities. The eventual design of the pilot and full-scale systems
hinges on the ability to predict adsorption behavior mathematically.

Objective:

The objective of this study is to elucidate the mechanism of Cr(VI) adsorption and to develop an Artificial Neural Network (ANN) model capable
of accurately simulating complex multi-layered adsorption processes.

Methods:

Batch equilibrium experiments were conducted for the removal of Cr(VI) by activated carbon. Conventional two and three-parameter equilibrium
models such as the Langmuir, Freundlich, Sips, original BET and modified BET were used to simulate the data and expound the mechanism of
adsorption. An ANN model was constructed with the built-in effect of the residual Cr(VI) concentration for the prediction of the equilibrium
sorption capacity.

Results:

The modified BET model was most successful at predicting the monolayer coverage. However, the model failed to capture the complex shape of
the isotherm at higher initial concentrations. The highest correlation to the equilibrium data was revealed by the ANN model (R2 = 0.9984).

Conclusion:

A batch adsorber was successfully designed using mass balance, and incorporating the predictive ability of the ANN model. In spite of the ANN’s
ability to simulate the adsorption process, it provides little insight into the mechanism of adsorption. However, its ability to accurately predict
Cr(VI) removal enables the up-scaling of the adsorption processes to pilot and full-scale design.
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1. INTRODUCTION

Chromium  is  a  priority  pollutant  and  exists  in  various
oxidative  forms.  However,  from  an  environmental  pollution
point  of  view, the  hexavalent  state, Cr(VI), in  the forms  of
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chromate (CrO4
2 −), dichromate (CrO7

2 −), and chromium oxide
(CrO3) is considered the most toxic state of chromium, due to
its high oxidizing potential, high solubility, and mobility across
the membranes in living organisms and in the environment [1].
According to Thambavani and Kavitha [2], persistent exposure
to  Cr(VI)  affects  human  health  by  causing  cancer  in  the
digestive  tract  and  lungs,  and  other  health  problems  such  as
skin  dermatitis,  bronchitis,  perforation  of  the  nasal  septum,
severe  diarrhea,  and  hemorrhaging.  Additionally,  Cr(VI)  is
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toxic  to  many  plants,  animals,  and  microorganisms  in  the
aquatic  environment  [3].  The  extensive  use  of  Cr(VI)in
industrial  processes  such  as  electroplating,  tanning,  textile
dyeing, and wood preserving invariably results in the discharge
of effluents containing soluble Cr(VI) in concentrations above
permissible  levels  [4,  5].  Mubeena  and  Muthuraman  [6]
reported  Cr(VI)concentrations  of  10.0  mg/L  in  industrial
electroplating  effluents  while  Mishra  and  Soni  [7]  reported
Cr(VI)concentrations  as  high  as  6.7  mg/L  in  effluents  from
dyeing and printing industries functioning in Balotara, India.
Tara et al. [8] reported 9.67 mg/L of Cr(VI)in textile effluent
obtained from industry in Faisalabad, Pakistan. World Health
Organization (WHO) recommends that the level of Cr(VI) in
wastewater be regulated below 0.05 mg/L [9]. Thus, research
into  the  removal  of  Cr(VI)from  wastewater  is  critical  to
protecting  human  health  and  the  environment.

Some  of  the  primary  treatment  methods  adopted  for
industrial-scaled  remediation  of  such  metal  ions  are  ion
exchange, chemical precipitation, and adsorption [10]. Due to
its  ability  to  attain  low  concentration  levels,  insensitivity  to
toxic  pollutants  and  simplicity  of  design  and  operation,
adsorption  research  has  become  a  major  topic  of  academic
focus. Researchers have studied various natural and synthetic
adsorbents with each shown to possess a varying affinity for
Cr(VI) ions. Goswami and Ghosh [11], reported a monolayer
sorption  capacity  of  3.48  mg  Cr(VI)  ions  per  g  of  synthetic
hydrous  stannic  oxide.  Alemu  et  al.  [12]  investigated  the
potential of vesicular basalt for Cr(VI) sorption. The maximum
sorption  capacity  was  79.20  mg/kg  of  the  adsorbent.
Agroindustrial  waste  such  as  grape  and  olive  waste  attained
capacities  for  Cr(VI)  of  108.12  mg/g  and  100.47  mg/g,
respectively  [13].  Reddy  et  al.  [14]  studied  the  removal  of
Cr(VI)  using  mustard  oil  cake.  The  authors  reported  a  total
chromium  removal  of  29  mg/g.  Living  and  dead  cells  of
Bacillus  coagulans  successfully  biosorbed 23.8  and 39.9  mg
Cr/g  dry  weight,  respectively  of  Cr(VI)  ions  [15].  While
biomass waste material-derived activated carbon successfully
removed 73.1 mg/g Cr(VI) [16].

The fitting of experimental data to equilibrium models can
provide  valuable  insights  into  the  mechanisms  of  adsorption
and  the  economic  feasibility  of  the  sorbent’s  commercial
application to enable optimization of the design and up-scale of
adsorption  units  [17,  18].  However,  the  accuracy  of  the
simulation cannot be overemphasized, as an accurate prediction
of  the  sorption  process  is  critical  to  enable  advancement  to
pilot  and  full-scale  design.  However,  in  many  reported
instances,  isotherms  produced  by  Cr(VI)  adsorption  exhibits
the BET Type II and Type IV [19] or the Giles L-shape [20]
isotherm. Such observations have been reported by Netzahuatl-
Muñoz  et  al.  [21]  for  the  sorption  of  Cr(VI)  onto  Cupressus
lusitanica bark; Terangpi et al. [22] for the removal of Cr(VI)
by  a  modified  aniline  formaldehyde  condensate  polymer;
Sfaksi  et  al.  [23]  for  the  removal  of  Cr(VI)  by  cork  waste;
Rossi  et  al.  [24]  for  the  removal  of  Cr(VI)  by  chemically
treated  Saccharomyces  cerevisiae  biomass.  Similar  complex
isotherms  have  been  reported  for  other  adsorbates  and
adsorbents as methylene blue removal by activated sunflowers
seeds  shell  carbon  [25],  dazomet  adsorption  by  zoelite  [26],
and  p-nitrophenol  adsorption  through  N2-thermal-based
treatment  of  activated  carbons  [27].

Zhang  et  al.  [28]  studied  the  adsorption  of  Cr(VI)  onto
carbon-microsilica  composites.  The  authors  concluded  that
their  complex  shaped  isotherm  belongs  to  subgroup  3  of  L-
shape isotherm which corresponds to the classification of Giles
et al. [20]. They went on to explain that this shape indicates the
formation  of  a  second  layer  due  to  an  abound  of  oxygen
functional  groups,  such  as  hydroxyl,  carboxyl  and  sulfonic
groups being introduced into the surface which form H-bond
with  HCrO4

-  radical  at  an  acid  aqueous  solution  and  remove
Cr(VI)  from the  aqueous  solution.  When  all  of  the  available
monolayer  sites  are  occupied,  the  HCrO4

-  radical  in  solution
could also be adsorbed by H-bond between the HCrO4

- radical
in solution and the HCrO4

- radical adsorbed on the adsorbent.
Ramadoss and Subramaniam [29] reported on the adsorption of
Cr(VI) onto blue-green algae. The authors conducted a critical
review of  isotherm models  to  simulate  the  obtained  L-shape
isotherm.  The  study  considered  12  two-parameter  isotherm
models including Langmuir [30], Freundlich [31], Jossens [32],
Fowler-Guggenheim  [33],  and  Temkin  [34];  18  three-
parameter  models  including  the  Redlich-Peterson  isotherm
[35],  Radke-prausnitz  [36],  Koble-Corrigan  [37],  Toth  [38],
Sips [39], and Khan [40]; 4 four-parameter models, namely the
Baudu Isotherm Model [41] and the Weber-van Vliet Isotherm
Model  [42];  and  the  Fritz-Schlunder  [43]  five-parameter
model. The highest R2  (0.9919) to the experimental data was
produced  by  the  three-parameter  Koble-Corrigan  isotherm
model,  however,  the  authors  concluded  that  the  model  was
incapable of defining the experimental data. Pedroza et al. [44]
also studied the adsorption of Cr(VI) from synthetic solution.
In  their  findings  for  adsorption  using  blast  furnace  dust,  the
resulting  experimental  isotherm  exhibited  a  similar  complex
shape,  i.e.  an initial  plateau followed by a sudden rise in the
curve  at  higher  aqueous  concentration.  The  Freundlich
isotherm  produced  the  highest  R2  (0.96),  however,  in  this
instance, the non-linear plot revealed that the correlation falls
off  as  the  curve  transitions  from  monolayer  to  multilayer
adsorption. In the study by Schneider et al. [45] of phosphate
removal  using  nanostructured  ZnFeZr  oxyhydroxide
precipitate,  the  BET  model  represented  the  reaction  well  at
higher initial concentrations however, the correlation fell off at
lower  concentrations.  A  similar  shortfall  in  the  use  of
conventional models was also observed in work by Al-Qodah
and Shawabkah [46] for the adsorption of triadimenol pesticide
using activated carbon.

ANN  is  a  computational  technique  derived  from  the
biological counterparts and based on the concept that a highly
interconnected system of simple processing elements known as
nodes  or  neurons  enables  the  learning  of  highly  complex
nonlinear interrelationships existing between input and output
variables  of  the  data-set  [47].  The  first  artificial  neuron  was
produced in 1943 by McCulloch and Pits [48]. This technique
has since gained considerable applications primarily towards
the development of predictive models to forecast future values
of  a  particular  response  variable  from  a  given  set  of
independent  variables  [49].  Such  predictive  models  are
information-driven  models  and  do  not  require  assumptions
about the input distribution [50]. Further, it benefits not only in
saving cost and time required for experimental studies but also
in improving the efficient application of full-scale adsorption
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systems [51]. Over the years, ANN has also been successfully
used to model foundation settlement [52], analysis of airfield
pavement  heavy-weight  deflectometer  data  [53],  batch  and
column adsorption processes [54 - 58], fermentation [59] and
air drying [60].

The need to attain an accurate mathematical simulation of
complex  adsorption  isotherms  provides  sufficient  interest  to
undertake  this  study.  Activated  carbon  remains  the  most
popular  adsorbent  and  has  been  used  with  great  industrial
success  [61].  Consequently,  research  into  the  removal  of
Cr(VI)  by  activated  carbon  continues  unabated.  Batch
equilibrium studies were conducted using commercial activated
carbon to adsorb Cr(VI) ions from aqueous solution. The intent
is to subsequently incorporate the operational parameters of the
adsorption  isotherm  into  an  ANN  and  develop  a  predictive
model. Using mass transfer, the predictive model may be used
to  overcome  isotherm  complexities  and  facilitate  accurate
process design and up-scaling. The use of ANN to overcome
the  shortcomings  of  conventional  fundamental  models  have
been successfully applied by researchers such as Gomez et al.
[62] for the simulation of column breakthrough curves; Lee et
al.  [63]  for  the  design  of  full-scale  coke-plant  wastewater
treatment process; and Hussain et al. [64] for the prediction of
porosity in foods during drying.

The objectives of this work are: (1) to describe the process
of  Cr(VI)adsorption  onto  activated  carbon  through  batch
equilibrium  studies;  (2)  to  elucidate  the  mechanisms  of
adsorption aided by simulation using isotherm models; (3) to
develop a predictive model using a back-propagation artificial
neural network to accurately simulate Cr(VI) adsorption onto
activated carbon; and (4) to use the ANN predicted adsorption
capacity to design batch adsorbers.

2. EXPERIMENTAL
2.1. Adsorbent

The  granular  activated  carbon  used  in  these  experiments
was  Calgon  Filtrasorb  300.  According  to  the  manufacturer
Calgon Corp. Canada, this carbon has an iodine number of 900
mg/g, an intrinsic pore volume of 0.85 and a BET surface area
of  950-1050  m2/g.  The  carbon  was  crushed  and  sieved  to
produce  a  Geometric  Mean  Size  (GMS)  of  0.21  mm.  The
(GMS) is expressed as (diameter of upper sieve × diameter of
lower sieve)0.5 [65].

2.2. Adsorbate
Reaction  solutions  were  prepared  using  potassium

chromate  diluted  in  distilled  water  (prepared  by  a  Corning
Mega-Pure  System  MP-1)  of  pH  approximately  7  and
conductivity < 5 μmhos/cm. Solution pH was then adjusted to
2.5 using appropriate solutions of HCl which was previously
determined to be optimum [66]. Solution pH was measured by
a  pH  meter  (Accumet  Research-AR10,  Fisher  Scientific).
Cr(VI)  concentrations  were  determined  by  an  Atomic
Adsorption  Spectrophotometer  (Perkin-Elmer  3030B).

2.3. Experimental Procedure
2.3.1. Equilibrium Studies

Batch adsorption studies were conducted using the parallel
method according to EPA OPPTS method 835.1230 [67]. The

equilibrium experiments were conducted with the initial Cr(VI)
metal  ion  concentration  of  66  mg/L  held  constant  while  the
adsorbent concentration was varied. Adsorbent dose was varied
from  0.5  to  5  g/L  for  contact  times  of  60  minutes.  The
adsorbent  was  then  separated  by  using  Whatman  No.  2
qualitative  filter  paper.  The  concentration  of  metal  ions  on
activated carbon at  the corresponding equilibrium conditions
was determined using the mass balance equation expressed as
follows:

(1)

Where, qe (mg/g) is the mass of the adsorbate adsorbed per
mass  of  adsorbent,  Co  (mg/L)  is  the  initial  adsorbate
concentration  in  solution,  Ce  (mg/L)  is  the  final  adsorbate
concentration  in  solution,  V  is  the  volume  of  synthetic
adsorbate solution, and M (g) is the mass of the adsorbent.

2.3.2. Equilibrium Models

2.3.2.1. Langmuir Isotherm

The Langmuir  isotherm assumes  that  adsorption  sites  on
the adsorbent possess an equal affinity for molecules and that
each site is capable of adsorbing one molecule thus forming a
monolayer [30]. The model is represented as follows:

(2)

Where,  qm  (mg/g)  is  the  maximum  specific  uptake,  KL

(L/mg) is the Langmuir’s constant related to the apparent heat
change.

2.3.2.2. Freundlich Isotherm

Firth  as  cited  in  [68],  explained  that  the  equation  of  the
form x = kc1/n  was first  applied to adsorption of gases by De
Saussure  in  1814.  Its  application  was  further  extended  to
solutions  by  Boedecker  in  1859  [68].  In  1906,  Freundlich
described the adsorption isotherm mathematically as a special
case for non-ideal and reversible adsorption [31]. This equation
is presented as:

(3)

Where,  KF  is  the  Freundlich  constant,  and  n  is  the
Freundlich  exponent.

2.3.2.3. Sips Isotherm

Sips [39] developed an empirical sorption isotherm which
assumes  a  molecule  can  occupy  two  sites  also  called  the
Langmuir-Freundlich  isotherm:

(4)

Where,  Ce  (mg/L)  is  the  final  concentration  of  ions  in
solution, qs (mg/g) is the equilibrium sorption capacity, αs is the
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Fig. (1). Structure of ANN model.

affinity  constant  for  adsorption,  and  ns  is  the  index  of
heterogeneity.

2.3.2.4. Original BET Isotherm (Type 1)

The  BET  isotherm  is  an  S-shape  isotherm  originally
developed for  gas adsorption [69].  According to Ebadi  et  al.
[70],  the  model  allows  the  determination  of  multilayer
adsorption behavior, monolayer adsorption capacity and heat of
adsorption  at  various  adsorption  layers.  When  applying  the
BET  equation  to  liquid  phase  adsorption  the  liquid  phase
concentration, C is simply substituted for the partial pressure.
However,  difficulty  arises  in  replacing  the  saturation  partial
pressure with the corresponding term in the liquid phase. The
application of the model has varied among researchers, where a
number of researchers have used CS, as an adjustable parameter
and have calculated it by fitting the BET isotherm equation to
the experimental data [70]. This form of the model referred to
here as BET Type 1 has three degrees of freedom which can be
solved by non-linear regression and is given by:

(5)

Where, qe (mg/g) is the amount of adsorbate sorbed on the
solid  surface,  qm  (mg/g)  is  the  amount  of  adsorbate
corresponding  to  complete  monolayer  adsorption,  Kb  is  the

constant expressive of energy of interaction with the surface,
Ce (mg/L) is the equilibrium liquid phase concentration, and CS

(mg/L) is  an adjustable parameter  related to the liquid phase
saturated concentration.

2.3.2.5. Modified BET Isotherm (Type 2)

Ebadi  et  al.  [70]  presented  an  adjusted  form of  the  BET
isotherm (BET Type 2) for liquid phase where the saturation
concentration  of  the  adsorbate  was  eliminated  from  the
classical BET isotherm equation, and the equilibrium constant
of  adsorption  of  upper  layers  (KL)  was  reinstated  in  the
equation.  The  adjusted  form  of  the  model  is  given  by:

(6)

Where,  qmBET2  (mg/g)  is  the  amount  of  adsorbate
corresponding to complete monolayer adsorption, KL (mg/L)-1

is  the  equilibrium  constant  of  adsorption  for  upper  layers  in
BET  isotherm,  KS  (mg/L)-1  is  the  equilibrium  constant  of
adsorption for the first layer in Langmuir and BET isotherms
and Ceq (mg/L) is the equilibrium liquid phase concentration.

2.3.3. Theory of Artificial Neural Network

An artificial neural network (ANN) attempts to mimic how
a biological system functions and how they can be utilized for
their novel architecture to solve highly complex, undefined and
nonlinear  mathematical  problems  [71].  In  this  study,  the
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multilayer  feed-forward  neural  network  trained  by
backpropagation is adopted. This ANN architecture is formed
by the number of layers, number of neurons in different layers,
transfer  function and initial  weights  which interconnect  each
layer.  According  to  Lek  and  Guegan  [72],  the  non-linear
elements  (neurons)  are  arranged in successive layers  and the
information  flows  unidirectional,  from  input  layer  to  output
layer, through the hidden layers (Fig. 1). The input values (Ce

within  the  range  of  5.6  to  52.8  mg/L)  are  weighted  before
entering the hidden layer  while  the  bias  units  add a  constant
term in the weighted sum, which improves convergence. The
output  is  based  on  the  sum  of  the  weighted  values  from  the
input layer and modified by a transfer function [66]. After the
network's output is compared with the target vector (qe within
the range of 5 to 23.8 mg/g), error values for the hidden units
are  calculated,  and their  weights  are  changed.  The backward
propagation  starts  at  the  output  layer  and  moves  backward
through the hidden layers until it reaches the input layer [73].
Table 1 presents the transfer functions at both the hidden and
output layer used to optimize the model.

2.4. Error Analysis

The  goodness  of  fit  of  the  isotherm  models  to  the
experimental  data  was  evaluated  using  the  coefficient  of
determination,  (R2),  as  well  as  the  Marquardt’s  Percent
Standard  Deviation  (MPSD),  Hybrid  Error  Function
(HYBRID),  Relative  Percent  Error  (RPE)  and  Mean  Square
Error (MSE) which are presented in Table 2.

3. RESULTS AND DISCUSSION

3.1. Equilibrium Analysis
The  experimental  equilibrium  data  which  describes  the

adsorption of Cr(VI) by activated carbon was fitted to the two-

parameter Langmuir [30] and Freundlich isotherms [31] as well
as  the  three-parameter  Sips  isotherm  [39],  the  original  BET
(Type  1)  isotherm  [69]  and  the  modified  BET  (Type  2)
isotherm [70]. Non-linear regression was used to simulate the
experimental data, and the goodness of fit was assessed using
error  function  the  results  of  which  are  presented  in  Table  3.
Among these isotherm models, the Langmuir model produced
the lowest error value.

The  shape  of  the  experimental  curve  (Fig.  2)  reveals
similar  characteristics  as  the  classical  Type  II  and  Type  IV
BET isotherms and class 3 Giles L-shape isotherm (Fig. 3a-c),
where the flat region of the curve corresponds to the possible
formation  of  a  monolayer.  Beyond  this  plateau,  the  curve
begins  to  climb  indicating  the  possible  formation  of  multi-
layers. A plot of the experimental isotherm data together with
both Langmuir and modified BET model simulation are shown
in  Fig.  (2).  The  Langmuir  model  produced  the  lowest  error
values;  however,  observations  of  the  figure  show  that  the
model  fails  to  properly  capture  the  essence  of  the  curve.
Although the modified BET also failed to capture the shape of
the  experimental  isotherm,  a  study  of  (Fig.  2)  reveals  the
modified  BET  sorption  capacity,  qmBET2  from  Table  3  was
successful in predicting the monolayer coverage of 18.08 mg/g.
Though this can prove useful in comparing the performance of
adsorbent in terms of monolayer coverage, the model cannot be
used for performance and design predictions.

Table 1. Transfer Function.

Name of Transfer Function Algorithm
logsig f(n) = 1/ (1 + exp(-n))
tansig f(n) = [2/ (1 + exp(- 2*n))] -1
purelin f (n) = n

Table 2. Error functions.

Error Functions Expression Equation Number
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Fig. (2). Simulation of experimental data by isotherm models and ANN model.

Fig. (3). Isotherm classifications: (a) BET Type II [19]; (b) BET Type IV [19]; and (c) Group 3 Giles L-shape isotherm [20].

Table 3. Comparison of isotherm and ANN models using non-linear regression for Cr(VI) uptake by activated carbon.

Model Parameters
Error Functions

RPE MPSD HYBRID
Langmuir qe = 32.3; KL = 0.039 10.991 12.098 21.441
Freundlich KF = 2.874; n = 1.94 13.446 19.325 32.299

Sips qs = 35.15; αs = 0.032; ns = 0.924 11.419 14.250 26.836
Original BET qmBET1 = -18.05; Kb = 1.0628; Cs = -11.34 11.480 17.320 28.892
Modified BET qmBET2 = 18.08; Ks = 0.0937; KL = 0.0055 13.221 17.608 34.570

ANN 1.688 2.061 0.603

Table 4. Performance of varying training algorithms of ANN model.

Backpropagation (BP) Algorithms Function MSE IN R2 Best Linear Eq.
BFGS quasi-Newton backpropagation trainbfg 0.1098 2 0.7007 y=0.96x-0.51

Bayesian regularization BP trainbr 0.0003 28 - -
Powell–Beale conjugate gradient backpropagation traincgb 0.0035 15 0.9853 y=1.0x-0.05
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Backpropagation (BP) Algorithms Function MSE IN R2 Best Linear Eq.
Fletcher–Reeves conjugate gradient backpropagation traincgf 0.5197 69 0.8834 y=0.93x+0.17

Polak-Ribiere conjugate gradient BP traincgp 0.0604 1 0.5004 y=0.98x+0.11
Gradient descent traingd 0.0949 1000 0.9525 y=1.1x-0.13

Gradient descent with momentum traingdm 0.1909 9 0.6791 y=0.84x-0.35
Gradient descent with adaptive learning rate traingda 0.0020 39 0.8731 y=1.0x-0.077

Gradient descent with momentum & Adaptive Learning traingdx 0.8794 24 0.7412 y=1.0x-0.03
Levenberg–Marquardt backpropagation trainlm 0.0367 5 0.8626 y=1.1x-0.14

One step secant backpropagation trainoss 0.2171 6 0.8542 y=0.8x+0.064
Random weight/Bias trainr 0.1585 5 0.8044 y=0.82x+0.18

Resilient backpropagation trainrp 0.0040 5 0.8991 y=0.81x-0.1
Scaled conjugate gradient backpropagation trainscg 0.1957 2 0.8092 y=0.79x+0.24

3.2. Artificial Neural Network Model

An ANN model was developed and optimized in this study
[using  the  neural  network  toolbox  of  MATLAB  7.14.0
(R2012a)® ] to predict and simulate the equilibrium manner of
Cr(VI)  adsorption  by  activated  carbon.  A  three  layer  feed-
forward  back  propagation  ANN  model  was  adopted  with  an
input  layer  comprising  one  neuron  as  residual  concentration
(Ce), while the output layer is the adsorbed solid concentration
(qe) (Table 6). Critical to the performance of an ANN model is
the design of its structure. Thus a protocol was developed for
its optimization and is presented.

The data were first normalized in the range -1 to 1 using
Eq.  (12).  The  dataset  was  then  divided  whereby  85%  of  the
data was applied to training the network and 15% for testing
the accuracy of the model and its prediction.

(12)

Where:

Xi =input or output variable X

Xmin = minimum value of variable X

The impact  of  training function on the network was first
examined  Table  4.  Using  the  tansig  and  purelin  transfer
functions at the hidden and output layer,  respectively and 10

neurons at the hidden layer, the Bayesian regularization back-
propagation  algorithm  produced  the  lowest  MSE  of  0.0003.
Using the Bayesian regularization back-propagation algorithm,
transfer functions from Table 1 were then varied to determine
the impact on the network. The performance of these transfer
functions at  the hidden and output layers was assessed using
the MSE and coefficient of determination. Using the first two
training,  the  optimum  functions  were  found  to  be  a  tangent
sigmoid  transfer  function  (tansig)  at  the  hidden  layer  and  a
linear transfer function (purelin) at the output layer (Table 5).

The number of nodes in the hidden layer is critical to the
performance of the ANN model. Too few neurons can lead to
under-fitting while too many neurons may result in over-fitting
[74]. In this protocol, the number of nodes was varied up to 18
and its impact on performance assessed using the MSE. Fig. (4)
presents the relationship between MSE value and the number
of nodes in the hidden layer. The minimum MSE was found to
be  0.00004  at  neuron  10.  Using  this  optimized  network,  the
output is compared to the target value and presented in Fig. (5).
The plot reveals a coefficient of determination of 0.9984 which
is greater than 0.95 and as such, is acceptable.  The optimum
ANN  structure  is  presented  in  Table  6.  Using  the  error
functions presented in Table 2, the precision of the simulation
was assessed as shown in Table 3. The prediction produced the
lowest  RPE,  HYBRID,  and  MPSD as  compared  to  the  other
standard  equilibrium  models.  Though  the  model  gives  no
insight  into  the  mechanisms  of  adsorption,  it  does  provide  a
useful tool for the prediction of sorption performance.

Table 5. Performance of varying transfer functions on ANN model.

Activation Function
Layer 1

Activation Function
Layer 2 MSE (First Training) MSE (Second

Training) R2 (First Training) R2 (Second Training)

Logsig Logsig 0.1009 0.1190 - -
Logsig Purelin 0.0004 0.0004 0.9449 0.9449
Logsig Tansig 0.0007 0.0057 0.993 0.993
Purelin Logsig 0.3575 0.1661 0.9429 0.9429
Purelin Purelin 0.0536 0.0506 0.9429 0.9429
Purelin Tansig 0.1187 0.083 0.9411 0.9411
Tansig Logsig 0.1307 0.1287 0.8487 0.8487
Tansig Purelin 0.0003 0.0003 0.9995 0.9995
Tansig Tansig 0.0403 0.0496 0.9296 0.9296
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Fig. (4). Relationship between MSE and number of neurons at hidden layer.

Fig. (5). Plot of ANN outputs vs. the corresponding experimental targets.

Table 6. Optimum ANN structure for equilibrium data.

Type Details
Network type Feed-forward backpropagation

Transfer function (Hidden Layer) Tansig
Transfer function (Output Layer) Purelin

Training function Bayesian Regulation
Performance function Mean Square Error (MSE)
Neurons in input layer 1

Neurons in hidden layer 10
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Type Details
Neurons in output layer 1
Data used for training 85%

Data for testing 15%
R2 0.9984

Table 7. Comparison of adsorption capacities of Cr(VI)with adsorbents reported in the literature.

Adsorbents Monolayer Adsorption Capacity (mg/g) pH Reference
ZeoliteNaX 6.414 4 [75]

Jordanian pottery materials 28.8 3 [76]
Olive stone activated carbon 25.6 1.5 [77]

Pine needles 40 3 [78]
Ore 15.67 2 [79]
Clay 14.43 2 [79]

Magnetic-poly(divinylbenzene-vinylimidazole) microbeads 4.353 2 [80]
Activated carbon 18.08 2.5 This study

Fig. (6). Design of single-stage batch system for Cr(VI) adsorption.

3.3. Monolayer Comparison to Values in the Literature

The monolayer adsorption capacity of sorbents reported in
the literature is compared in Table 7 to values obtained in this
study. The table reveals that the activated carbon used in this
study compares well to sorbents previously reported. It is noted
that the adsorbent in this study exhibited characteristics of the
multi-layer formation, which, within the range of operational
parameters  produced  a  maximum  sorption  capacity  of  18.08
mg/g. Further, it is emphasized that the present study aims to
predict the complex equilibrium behaviour of this adsorbent for
the design of batch adsorbers.

3.4.  Design  of  Batch  Adsorption  System  from  ANN
Predicted Equilibrium Data

3.4.1. Theory of Batch Adsorbers

Laboratory-scale  equilibrium  studies  are  used  to  predict
batch  adsorber  size  and  performance.  Fig.  (6)  shows  the

schematic  of  a  single-stage  batch  adsorber  with  a  solution
volume  of  V  (L)  and  the  initial  Cr(VI)  concentration,  Co  is
reduced to Ct as the reaction proceeds. The Cr(VI) loading on
the adsorbent in the reactor of mass M (g), changes from qo to
qt  with  increased  reaction  time.  The  mass  balance  for  the
reactor  is  given  by  the  following  [81,  82]:

(13)

3.4.2. Development of a Predictive Model

An empirical equation was developed to predict adsorption
capacity without having to run the ANN model in Matlab. This
will be beneficial not only in saving cost and time required for
experimental  studies  but  also  in  improving  the  efficient
application of full-scale adsorption systems [51]. The equation
derived using the weights (Wi) and biases (bi) to the input layer
of the optimized network Table 8 is presented here as follows:

(Table 6) contd.....

qo (mg/g) M (g)

V (L)

Ct (mg/L)Co (mg/L)

V (L)

qt (mg/g) M (g)

0 0( ) ( )t t tV C C M q q M q� � � �
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(14)

Where, coefficients are the weights and bias to the output
layer and Fi is the tansig activation function used in the hidden
layer and is given as:

(15)

And Ei is the weighted sum of the input defined as:

(16)

3.4.3. Design of a Batch Adsorber

The adsorption process was best represented by the ANN
model,  thus  the  mass  balance  (Eq.  13)  under  equilibrium
condition  (Ct  →  Ce  and  qt  →  qe)  is  arranged  as  follows:

(17)

Table 8. Weight and bias values obtained by the Bayesian Regularization BP algorithm with 10 neurons.

i Input 1 Bias 1 Output
Node 1 3.1831 -3.7416 1.0969
Node 2 4.6201 -3.3772 0.9496
Node 3 -2.7785 2.0832 1.2592
Node 4 3.2129 -0.9658 0.3095
Node 5 3.0881 -0.3451 -0.1231
Node 6 -3.0856 -0.3557 0.0251
Node 7 -3.0853 -1.0384 -0.0381
Node 8 3.0822 1.7335 0.2706
Node 9 3.0794 2.4138 0.2646
Node 10 3.0795 3.0982 0.4054
Bias 2 0.3696

Fig. (7). Adsorbent mass (M) vs Volume of Cr(VI) solution treated (V).
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Fig. (7) presents a series of plots of the predicted values of
M  (g)  versusV  (L)  for  50%,  60%,  70%  and  80%  Cr(VI)  ion
removal at the initial concentration of 50 mg/L. As an example,
the mass of adsorbent required for 70% Cr(VI) removal from
aqueous solution was 8 g and 19 g, for Cr(VI) solution volumes
of 3 L and 7,  respectively.  This evaluation becomes relevant
for  pilot-batch  system  design  as  well  as  large-scale  batch
applications.

CONCLUSION

The equilibrium data were modelled using classical  two-
and  three-parameter  isotherm  models.  Among  these  models,
the  Langmuir  model  produced  the  closest  simulation  to  the
experimental  data;  however,  the model failed to successfully
capture  the  shape of  the  isotherm.  The modified  BET model
was successful in predicting the monolayer sorption capacity of
the activated carbon for the Cr(VI) ions; however, the model
also produced a poor simulation making it incapable for design
applications.  An  ANN  model  was  successfully  developed  to
simulate and predict the experimental adsorption equilibrium
data  using  the  Bayesian  Regulation  training  algorithm.  The
model  was  successfully  applied  to  design  batch  absorbers
which  can  enable  up-scale  to  pilot  and  full-scale  design.
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