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Abstract: For the difficulty of applying classical fracture criteria to the actual hydraulic engineering and simulating the 
process of cracking by conditional FEM, the XFEM was introduced in the analysis of the seepage field in hydraulic 
structures in this paper. Firstly,  the enriched forms of nodes are analyzed in the elements intersecting with cracks, and 
then  the enriched functions were built, which could either reflect the features of conductivity matrix within cracks, or 
satisfy the condition  that osmotic pressure is continuous across the crack. Thus, the XFEM approximation form was 
obtained. Finally, combining  the initial conditions and boundary conditions, the discrete equations and workflow of 
XFEM for solving the seepage field were established. The case study shows that the method is reasonable and reliable. 
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1. INTRODUCTION 

 Due to the characteristics of the structure itself and its 
construction and operation environment, many hydraulic 
concrete structures result in cracks. Obviously, the existence 
of cracks  seriously undermines the integrity of a structure, 
having a significant impact on the structure itself and its 
morphology, and is also not conducive to operate the 
structure safely. Therefore, monitoring and analyzing of the 
deformation of cracks are one of the important contents for 
safety evaluation of a hydraulic concrete structure. 
Meanwhile, hydraulic concrete structures are always 
operated under the effect of Hydro-Mechanical (HM) 
interaction.  
 In this paper, based on the analysis of the properties of 
hydraulic concrete structure, analysis and monitoring method 
of the security status of hydraulic concrete structure crack 
under the effect of HM interaction is studied by using 
extended finite element method (XFEM).  
 Infiltration of the reservoir water changes the distribution 
of the flow field in structures, thereby causing changes in its 
stress field, displacement field and the crack behavior. 
Conversely, the seepage boundary condition in cracks 
changes due to the structural stresses and the geometry 
fetures of the cracks, thereby affecting the distribution of the 
permeability and the seepage pressure within the cracks, and 
changing the seepage field of the crack area in structures. 
Therefore, in order to analyse the crack behavior of hydrau-
lic concrete structures under  the  interaction  of  the  seepage 
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and water pressure, the changes of the seepage field, 
displacement field, and the interaction law between them 
should be studied at first. 
 Currently, the most versatile and mature means solving 
the problems related to the fields of seepage and 
displacement is the FEM. However, for the structures with 
cracks, as the crack-size changes, it is necessary to mesh and 
remesh the discontinuity surfaces, thus increasing the 
computational costs and projection errors associated with 
conventional finite element methods. Recently, the 
development of the numerical analysis for solving discrete 
mechanics, such as XFEM, has facilitated the building of the 
deformation monitoring methods for those with non-stable 
cracks. 
 The extended finite element method (XFEM), first 
introduced by U.S. Northwestern University Study Group 
headed by Prof.Belytschko [1], provides a convenient and 
effective way for problems with discontinuities. It models 
the discontinuity in a displacement field along the crack 
path, wherever this path may be located without considering 
the mesh. This flexibility enables the method to simulate 
crack growth without remeshing. XFEM has been developed 
rapidly and applied widely in only a few years [2-12]. Thus, 
the XFEM is an optimum method to study the dynamic 
expansion of cracks under the interaction of the seepage field 
and stress field. Considering that there is no precedent in 
solving seepage problems with this method, in order to 
analyze the interaction of the two fields under the framework 
of XFEM, the XFEM approximation and solving method of 
the seepage field should first be studied. Therefore, the 
XFEM is introduced to conductseepage analysis on the 
sructures with cracks. According to the characteristics of 
seepage field with cracks, the XFEM approximation form 
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and discrete equations of the seepage field are studied by 
analyzing the basic theory of seepage and building the 
enriched functions of crack related elements, and finally, the 
XFEM for solving the seepage field is established. 

2. MATERIALS AND METHODOLOGY 

2.1. The Extended Finite Element Discretization 

 The basic idea of XFEM is to locate the crack path  
without any respect to the mesh by using some additional 
function to improve classical FEM. XFEM models the 
discontinuity in a displacement field along the crack path by 
incorporating some local enrichment functions into the 
classical finite element approximation. The displacement 
field approximation can be expressed as [3]: 

( ( )) ( ( ))u u x a x bφ φ= + − + −T N N H H N  (1) 

Where, N is the array of shape functions; u , a and b  
represent the vectors of displacement and enriched variables 
related to nodes. H involves the Heaviside function, and φ is 
used to model the displacement field around the tip of the 
discontinuity [13].  
 According to the westergaard base of asymptotic crack-tip 
field in the linear elastic fracture mechanics, φ is taken as: 

[ ]1 2 3 4= =φ φ φ φ φ  

[ ]θ θ θ θrsin rcos rsin sinθ rcos sinθ
2 2 2 2  (2)  

 Asthe displacement field nearing crack-tip for cohesive 
cracks no longer has the sigularity, according to the 
asymptotic analysis [13-14] of the mechanical fields in a 
cohesive zone for a very large structure, φ is taken as: 

sin
2

r θφ ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (3) 

Where )(r,θ is the local polar coordinate at the tip.  

2.2. Solving the Seepage Field with XFEM 

 Using XFEM to solve the seepage field in the stuctures 
with cracks is different to that for discontinuous 
displacement field. The key to the problem is how to 
describe the characteristics of conductivity coefficient matrix 
within cracks effectively and reasonably, and then the 
enriched functions of crack related elements can be 
constructed. The functions should either allow the osmotic 
pressure to be continuous, or make flow balancing at nodes. 
Because although the distribution of seepage water-head is 
continuous, the conductivity coefficient matrix within its 
cracks is different from the rest of the structure, which 
reflects the impact of cracks on the seepage field. Therefore, 
the enriched functions of crack related elements should be 
studied first, and then the XFEM approximation and discrete 
equations of the seepage filed should be finally built. 

2.2.1. Enriched Functions 

 Similar to the method for describing the displacement 
field by XFEM, the level set method(LSM) is also used to 

simulate the seepage field of structures with cracks, and it is 
used to select the enriched nodes. There are two forms of 
enriched node, namely split-element enriched node and tip-
element enriched node. Once the mesh generation is the 
same in the two fields, the enriched nodes are exactly the 
same, which make the analysis on the interaction of 
seepage,stress and deformation easier. Despite the above 
similarities, the enriched functions should be different in 
seepage field and displacement field. As the water-head, 
unlike crack deformation, is not discontinuous for the 
existence of cracks, so the enriched nodes adopted in the 
seepage field should be separately studied in detail. This is 
specifically described in two cases as follows. 

(1) Enriched Nodes in Split-Element 

 LSM is adopted to track the crack interface, whose 
change is expressed as the equation of function ( , )φ x t .  
The dimension of ( , )φ x t  is one dimension higher than that 
of the crack interface. Mobile interface 2( )tγ ⊂ R could be 

assumed as the LSM curve: 2R R R× → , where: 

( ){ }2( ) , 0Rγ φ= ∈   :  =t x x t  (4) 

 The movement of ( )tγ could be obtained by the 
evolution equation of φ [15]:  

( )
0

,0 is givenx
F⎧ + ∇   =  ⎪

⎨
⎪⎩

φ φ
φ
t  (5) 

Where, F is the speed in normal direction of the point
( )γ∈x t outside the interface. 

 LS ϕ is defined as the signed distance function, and LS 
zero can be described as the crack interface. 

ϕ ( )
( )

,
X
min
γ

γγ∈
= ± −

t
x x xt  (6) 

When the point x is above the crack ( )tγ , the sign is taken 
positive; otherwise, it is taken negative. 

 The water-head enriched function ( )ψ φ in split element 
should be the function of LS ( , )xφ t . Considering that 
water-head is continous within the crack, 
0 ( ) ( ) Ixψ φ φ φ= = ∑ I

I
N  is first proposed. However, the 

enriched function only exists in the enriched-node domain of 
support, that is, only the functional values of one-layer 
elements in both sides of the crack related elements should 
be calculated, but the function exists in the whole solving 
domain. In order to meet the above requirements and to 
improve the convergence rate, some optimization and 
adjustment should be conducted on this function. The 
adjustment strategy is as follows: define eM as enriched node 
set, and define iφ as the value of LS function at each enriched 
node, and assume ( )i iψ φ φ= . The sets enriched nodes near 
split elements are defined as { }1 2, , ,p p qM n n nψ + += K , where 
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the nodes are arranged in ascending order by node value, and 
its LS value is taken as the initial value. Thus, the 
optimization algorithm of enriched function of nodes inMψ  
is as follows: 

For J = p+1, q 

 Building the set { }:J i e i jG nod M Mψ ψ φ= ∈ ∪ < , 

Where the nodes inod  and jnod have the same element 
edge; 

( )jψ φ  is solved by minimizing the following equation: 
2

I J

J I

nod M IJ

min
d

ψ φ
∈

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑ ,where IJd is the distance between node 

I and J. 
 The result of solving the problem of the minimum value 
is expressed as follows: 

J

J I I
nod M

ψ α φ
∈

= ∑ ,
2

2

1
1

K J

I
I

Knod M

L
L

α
∈

=
∑

 (7) 

 As known from the above derivation, the desired 
enriched function should be expressed as: 

1( ) ( )xψ φ ψ ψ= = ∑I I I
I
N  (8) 

 Referring to the definition of displacement field 
enhanced mode ( )( ) ( ) ( )x x xψ ψ= −∑enr

j j j
j

u a N ,  the 

enriched function of enriched nodes in seepage field is 
defined as [15]: 

2 ( ) ( ) ( )x xψ ϕ ϕ= −∑ ∑i i i i
i i

X N N  (9) 

 One-dimensional schematic of the above enriched 
functions 0 ( )ψ φ 、 1( )ψ φ  and 2 ( )Xψ  is as shown in Fig. (1), 
where the convergence rate of 2 ( )ψ x  is highest and close to 
the optimum convergence rate of the FEM. There is a ridge 
at the position of crack winthin the two-dimensional 
schematics of 2 ( )xψ (Fig. (2) and Fig. (3)). The value of 
function 2 ( )xψ  is zero within the elements which do not 
contain the cracks [14]. 

 
Fig. (1). Several choices for the enrichment function. 

 

 
Fig. (2). Enrichment function 2 ( )xψ . 

 
Fig. (3). Enrichment function 2 ( )xψ . 

(2) Enriched Nodes in Tip-element 

 If the crack terminates within the element, and the above 
enriched function is used, then the crack tip is treated as 
extending to the edge of element, and  the result is no longer 
considered to be accurate. While there is a tip enriched 
function, selecting the analytic solution of asymptotic crack-
tip field as enriched function, it could be ensured that the 
crack terminates exactly within the element. The main items 
of asymptotic expansion of the water-head and flow velocity 
are as follows: 

2 cos
2
θ

π
⎛ ⎞= − ⎜ ⎟⎝ ⎠

HK rH
k

, cos
2

2 sin
2

θ

θ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= −

⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

HKv
πr

 (10) 

 According to the above expansion items, the second item 
of the formula (2) should be used as the enriched function of 
crack tip: cos

2
θϕ ⎛ ⎞= ⎜ ⎟⎝ ⎠

r . Since the value of LS at the crack 

interface is zero, it has no effect on the situation that crack is 
set as the boundary. 
 In summary, the XFEM approximation of seepage field 
can be expressed as follows: 

Crack Enriched node

¦ ×2
¦ ×0

¦ ×1
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( )
( )

*I

k

( ) ( ) ( ) e

( ) ( )

h
i i j j j

i j J

k k
k K

H N H N

N f

φ φ

ϕ ϕ
∈ ∈

∈

= + − +

                −

∑ ∑

∑

x x x

x x
 (11) 

Where, x is the coordinate vector of point, ( )iN x , ( )jN x  
and ( )xkN  are the shape functions of the conventional 

FEM. iH  is the conventional water-head of nodes. je  and 

kf  are the water-head enriched DOFs of split-element and 
tip-element, respectively. ( )xφ  and ( )xϕ  are 

correspondingly the enriched functions, while φj  and ϕk  are 

the values of the two kinds of node. I  is the set of all the 
nodes. *J is the node-set of all elements intersected by 
crack. K  is the node set of tip elements. 
As shown in formula (11), if there is no crack intersecting 
the element, then the first item at the right of the equation 
should be taken as the seepage field of the element. While in 
the split element, the first two items at the right of the 
equation should be taken. If the crack terminates within the 
elements, then the whole three items at the right of the 
equation should be used. In theplane, each nodes in split 
element and tip element have two DOFs, while other nodes 
have one DOF [15]. 

2.2.2. XFEM Discrete Equation of Seepage Field 

 The governing equation of steady seepage field of 
cracked stucture should be given first. Assuming that the 
fluid is incompressible and  not endogenous, there is a 
seepage field in the two-dimensional plane (Shown in Fig. 
(4)).  

 
Fig. (4). Seepage boundary conditions. 
 

There are water-head boundary 1Γ 、 overflow surface 

boundary 2Γ 、 impermeable boundary 3Γ 、 free surface 

boundary 4Γ and crack Γc in the whole region of Ω .The 
equation of ( , ) ( , )H x z f x z=  should be satisfied at the 

boundry of 1Γ and 2Γ ; in the meantime, the equation of 

cos( , ) cos( , )x z
H Hk n x k n z q
x z

∂ ∂+ =
∂ ∂

 should be satisfied at 

the boundry of 2Γ , where n  is the normal direction of the 
overflow section. The value of q is determined in the 

iterative process. The equation of 0∂ =
∂
H
n

 should be satisfied 

at the boundry of 3Γ  and 4Γ , where n  is the outer normal 
direction of the boundary. Water level on both sides of the 
crack surface Γc should be continuous. 

 Defining H as water-head function, , xk 、 yk and zk are 

the permeability coefficients in the direction of x、 y  and 
z , respectively. Then the basic equation is to be satisfied for 
three-dimensional seepage field: 

2 2 2

2 2 2 0x y z
H H Hk k k
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

 (12) 

 For two-dimensional planar seepage field shown in Fig. 
(4), the following formula should be conformed : 

2 2

2 2 0∂ ∂+ =
∂ ∂x z
H Hk k
x z

 (13) 

 Combining  the boundary conditions,  the functional 
theory can be used to solve the equation (13),  having the 
result: 

2Γ

1( ) Γ
2

2 2

x z
R

H HI H = k +k dxdz qHd
x z

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∂ ∂ −
∂ ∂∫∫ ∫  

1 2Γ ,Γ( , ) ( , ) |H x z f x z= ,
3 4Γ ,Γ0|H

n
∂ =
∂

 (14) 

 By dividing the solving domain into finite elements, the 
function ( )I H  will be the integral sum of all the elements: 

eI I∑=  (15) 

Where, eI  is the function of element e  in the solving sub-
region RΔ , and can be expressed as: 

1 Γ
2

e

e
2 2

x z
R

I H Hk +k dxdz qHd
x zΔ Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∂ ∂ −
∂ ∂∫∫ ∫  (16) 

 The XFEM discrete equation could be deduced from 
eqation (16) in detail as follows: assuming that the node IDs 
of elements in equation (11) are respectively , ,i j m pK . 
Conventional water-head DOFs of each node are defined as 

[ ] T

i j m pH H ,H ,H , ,H⎡ ⎤= ⎣ ⎦K . Enriched water heads of split 

elements are respectively [ ] T

i j m pe e ,e ,e , ,e⎡ ⎤= ⎣ ⎦K , and the 

enriched water heads of split elements are respectively 

[ ] T

i j m pf f , f , f , , f⎡ ⎤= ⎣ ⎦K . Meanwhile, the equation of 

¦ £4

¦ £1

¦ £1
¦ £1

¦ £c

¦ £1

¦ £2

¦ £3

¦ £1
H 2

H 1 x

z
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Γ

=∫
e

qHdΓ Q  should be satisfied, which means that the 

nodal flow is equivalent, and is zero in all the internal nodes 
and boundary nodes carrying no flow. For two-dimensional 
seepage flow, ( ),eH x z represents the water-head of any 

point in the sub-region of elements. Then ( ),eH x z is 
available by interpolating the water head of each node: 

( ),e
i i j j m m p pH x z N H N H N H N H= + + +K  

i i i j j j m m m p p pN e N e N e N eψ ψ ψ ψ+ + + +K   

i i i j j j m m m p p pN f N f N f N fϕ ϕ ϕ ϕ+ + + +K       (17) 

Where, , , , ,i j m pN N N NK  are the conditional shape 

functions of element nodes. , , , ,i j m pψ ψ ψ ψK  represent the 
values of enriched functions of the nodes in split elements. 
And , , , ,ϕ ϕ ϕ ϕi j m pK are the values of enriched functions 
of the nodes in tip elements. 

 The integral terms in formula (16) should be 
differentiated to any DOF while deriving the discrete 
equations. And the differentiator to iH is taken as an 
example as follows: 

e

x z
i i iR

I H H H Hk +k dxdz
H x H x z H zΔ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫  

Γ
e i

Hq d
HΓ

∂−
∂∫  (18) 

( ) ( )( ) ( )

( ) ( )( ) ( )

ψ ψψ ψ

ϕ ϕϕ ϕ

∂ ∂∂ ∂∂ =    + + + +
∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂+ + + +
∂ ∂ ∂ ∂

∂ ∂∂ ∂+ + +
∂ ∂ ∂ ∂

j pi m
i j m p

j j p pi i m m
i j m p

j j p pi i m m
i j m p

N NN NH H H H H
x x x x x

N NN Ne e e e
x x x x

N NN Nf f f f
x x x x

K

K

K

 

( )

i
i

i i

i i
i i

i i

NH H N
H x x H

NH H N
f x x f

ϕ
ϕ

∂∂ ∂ ∂⎛ ⎞ =          =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                        

∂∂ ∂ ∂⎛ ⎞ =    =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

M M

，

，

 (19) 

 Substituting formula(18) into formula (19): 

{ } { } { }{ }

e

i

e e

eTT T Ti

e

i

I
H

I I
e

H e f

I
f

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪
⎪ ⎪
⎪ ⎪
∂ ∂⎪ ⎪ =⎨ ⎬∂⎪ ⎪ ⎡ ⎤∂ ⎣ ⎦⎪ ⎪

⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎩ ⎭

M

M

 

= { } { } { }{ }⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦

eTT T Tek H e f − { }eQ =0 (20) 

Where { }eQ  is the flow matrix of element, and ek⎡ ⎤⎣ ⎦  is the 

conduction matrix of element. According to the formula 
(18), e

ijk  and e
iQ could be respectively calculated as follows: 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

HH He Hf
ij ij ij

e eH ee ef
ij ij ij ij

fH fe ff
ij ij ij

h h h
k h h h

h h h

, 

( ) Ω
Trs r s

ij j rs iR
h B S B d

Δ
= ∫ , ( )r,s= H,e, f  (21) 

{ } { }e
i i i i i iΓ
Q N N N q dφ

e

Tψ=        Γ∫  (22) 

Where, 

H i i
i

N NB
x z

∂ ∂⎡ ⎤=    ⎢ ⎥∂ ∂⎣ ⎦
, ( ) ( )i i i ie

i

N N
B

x z
ψ ψ∂ ∂⎡ ⎤

=    ⎢ ⎥∂ ∂⎣ ⎦
,

( ) ( )i i i if
i

N N
B

x z
φ φ∂ ∂⎡ ⎤

=    ⎢ ⎥∂ ∂⎣ ⎦
,.. represents permeation 

coefficient matrix. 

 There are some descriptions for rsS  as follows:  

(1) Permeability coefficient matrices in the elements without 
intersecting with cracks are consistent with that of the 
conventional FEM. (2) In the elements intersecting with 
cracks, the permeability coefficient matrices include two 
parts: permeability coefficient of the element and that of the 
crack. The former is consistent with that of the conventional 
FEM, while in the latter condition, the cracks are treated as a 
medium, and the permeability coefficient is solved by the 
width of the cracks; and then the permeability coefficient 
should be converted from the spindle direction within cracks 
into the global coordinate system. 

1

2

x
rs l g

z

k 0 k 0
S M

0 k 0 k→
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, l gM → is the transformation 

matrix that converts the local coordinate system into the 

global coordinate system. The rsS  present in the formula (21) 
refers to the permeability coefficient within cracks, while 
r,s  represent the enriched DOFs ore f . If any one of the 

r,s  is taken as the conventional DOF, then the rsS is 
consistent with that of the continuous part of the structure. 
Thus, in the elements intersecting with cracks, the influence 
of crack is maintained within the permeability coefficient 
matrix.  
By integrating the results of all the elements, the equations in 
solving region could be obtained: 

{ } { } { }{ } [ ]{ } { } 0
TT T T

I k H Q
H e f

∂ = − =
⎡ ⎤∂ ⎣ ⎦

 (23) 
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Where, { }H is the water-head matrix of all the nodes 

(including the enriched nodes). [ ]k is the total permeability 

coefficient matrix, where the factor ijk could be integrated by 

the e
ijk of each element related to node i . { }Q is the flow 

array of nodes, and the water head of any point within 
elements could be calculated from formula (17). 

2.2.3. Solving Steps for Seepage Field by XFEM 

 Solving seepage problems of free surface section is 
related to the procession of the elements intersected by the 
infiltration line. In this study, initial flow method is adopted 
to determine the position of the free surface, and this 
constant mesh method is effective to solve the seepage 
problem of free surface. The basic idea is that the free 
surface is divided into two sub-domains by the infiltration 
line, and the two parts have no flow exchange, which could 
be basically achieved by adjusting the initial flow normal to 
the free surface [16].  
 For the initial flow method, the FEM equation [16] of the 
whole region could be expressed as: 

[ ]{ } { } { }0k H Q Q= +  (24) 

Where, [ ]k and { }Q are respectively the total penetration 

matrix and equivalent nodal flow matrix. { }0Q is the nodal 
flow matrix caused by the increasing initial flow, its 
expression is: 

{ } [ ]( ) [ ][ ] [ ]0 e

Te T e

e
Q A B k F B d H

Ω
= Ω⋅∑ ∫  (25) 

Where, F is a discontinuous function, and the values of F  
in unsaturated zone and saturated zone are respectively taken 
as 0 and 1. [ ]eA  is the selection matrix for integral 
assembling. [ ]k and[ ]B have the same means as formula (21). 

 Combined with the initial flow method, the solving steps 
for seepage field by XFEM are as follows: 
(1) Meshing for XFEM, the water head of all nodes is 
calculated by the formula (17). 

(2) At first, according to the relationship between water head
h and z , determining the value iF of each node, the value of 
each Gauss integration point within element could be 
obtained by:

G i i
i

F N F=∑ . Secondly, by the convergence 

criteria, it is judged whether the difference { }HΔ  between 
the results of the adjacent two iterations is zero. If it is zero, 
then computing is stopped, else, the procedure is moved to 
the next step. 

(3) { }0
nQ is defined as the increment of water head at the 

right of the equation: 

[ ]{ } { }0
n nk H QΔ = ,{ } { } { }1n n nH H H+Δ = + Δ  (26) 

(4) After returning to step (2), and keeping the iteration, unit
{ }HΔ meets the convergence conditions, and the results of 
each node are the desired water heads. It is to be noted that 

the convergence criterion is: { }max nH εΔ ≤ . 

3. RESULTS 

 A typical sectional view of the non-overflow section of a 
concrete gravity dam is shown in Fig. (5). Its crest width and 
height are respectively 10m and 65m. The width and 
elevation of the dam bottom are 53m and 65m, respectively. 
The downstream slope is 1:0.7, and the impermeable curtain 
is below the surface 32m in-depth. The upstream water level 
is 112m, and the downstream water level is 68.5m. To 
simplify the analysis, the impact of the dam drainage is not 
considered here. 

 
Fig. (5). Typical profile of a gravity dam. 

 
  The XFEM model of the dam section is built at first, and 
then  the seepage field is calculated under the action of 112 
m water level respectively under the conditions that the dam 
section has upstream horizontal fracture and has no crack. 
Permeability coefficient of the dam is taken as 8.0×10-9 m/s, 
and that of the curtain and foundation are taken as 5.0×10-8 

m/s and 1.5×10-7 m/s. It is assumed that there is horizontal 
construction which  is 10m in length. The average width and 
initial permeability coefficient are 0.2mm and 1.0×10-3m/s, 
respectively (referring to the layer value of the RCC dam). 
XFEM model of the section is totally arranged at 1240 nodes 
and 1159 elements, and the seepage water level distributions 
obtained are shown in Fig. (6) and Fig.(7), respectively. 
 As shown in Fig. (6) and Fig. (7), the existence of crack 
has a great impact on the seepage field near the crack area, 
and the gradient of the water permeability within the crack is 

10.0m

Impervious curtain

53.0m

112.0m

Crack

120.7m

65.0m

85.0m

130.0m

68.5m
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small, which is consistent with the actual situation. Thus, the 
feasibility and correctness of the compiled programs for 
XFEM solving seepage field have been proved in this study. 

CONCLUSION 

 Based on the study of principles and characteristics of 
XFEM, the analysis of the seepage field in hydraulic 
structures was introduced in this paper. At first,  the enriched 
forms of nodes were analyzed in elements intersecting with 
cracks, and the enriched functions were built, which could 
either reflect the features of conductivity matrix within 
cracks, or satisfy the condition  that osmotic pressure is 
continuous across the crack. Thus the XFEM approximation 
form was obtained. Finally, combining the initial conditions 
and boundary conditions, the discrete equations and 
workflow of XFEM for solving the seepage field were 
established. The case study shows that the method is 
reasonable and reliable. 

 The seepage field and displacement field were solved in 
the unified framework of XFEM, and both the two fields had 
the same mesh and enriched node set. Thus, at each step of 
crack propagation, only one-time judgment should be 
conducted for the enriched nodes. Furthermore, both the 

troubles of determining the corresponding relationship of the 
variables between the two fields, and the coordination 
problem of different meshes could be avoided in dealing 
with the coupling problems. The computing efficiency could 
also be improved. For the hydraulic structures with crack, 
the XFEM of solving crack propagation problem has great 
potential. In this paper, only the method of solving seepage 
field by XFEM is proposed, but how to apply it to the 
analysis of crack extension needs further study. 
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