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Abstract: Uncertainty in water resources management is in part about variability, in part about ambiguity. Both are asso-

ciated with lack of clarity because of the behavior of all system components, lack of data, lack of detail, lack of structure 

to consider the water resources management problems, working and framing assumptions being used to consider the prob-

lems, known and unknown sources of bias, and ignorance about how much effort it is worth expending to clarify the man-

agement situation. The two major sources of variability are temporal and spatial heterogeneity. Temporal variability occurs 

when values fluctuate with time. Other values which are affected by spatial variability are dependent upon location of an area. 

A major part of the water resources management risk confusion relates to an inadequate distinction between the objective 

risk (real, physical) and subjective (perceived) risk. Because of the confusion between the two concepts, many characteris-

tics of subjective risk are believed to be valid also for objective risk. The main objective of this paper is to present the 

possible methodology for the reliability analysis of water resources systems that will be capable of: (a) addressing water 

resources uncertainty caused by variability and ambiguity; (b) integrating objective and subjective risk; and (c) assisting 

the water resources management based on better understanding of spatial variability of risk. Presented methodology is il-

lustrated using flood reliability analysis of the Medway Creek floodplain in the City of London, Ontario, Canada. 

1. INTRODUCTION OF RESEARCH CONTEXT 

Water Resources Management Under Uncertainty 

 Uncertainty is in the plain language defined as lack of 
certainty. It has important implications for what can be 
achieved by water resources systems management. All water 
management decisions should take uncertainty into account. 
Sometimes the implications of uncertainty are risk in the 
sense of significant potential unwelcome effects of water 
resources system performance. Then managers need to un-
derstand the nature of the underlying threats in order to iden-
tify, assess and manage the risk. Failure to do so is likely to 
result in adverse impacts on performance, and in extreme 
cases, major performance failures. Sometimes the implica-
tions of uncertainty are an opposite form of risk, significant 
potential welcome effects. Then managers need to under-
stand the nature of the underlying opportunities in order to 
identify and manage the associated decrease in risk. Failure 
to do so can result in a failure to capture good luck, which 
can increase the risk. For example, a development of re-
gional water supply system which generates unexpectedly 
rapid urbanization of the area may prove a disaster if the 
increasing demand can not be met in the future; a pipeline 
construction project activity which finishes early may not 
result in a following activity starting early, and later delays 
will not be avoided by this good luck if it is wasted; a struc-
tural flood protection measure which generates new oppor-
tunities for the development of floodplain may increase the 
future damage in the case of a more severe flood event. 
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 Uncertainty is in part about variability in relation to 
physical characteristics of the water resources systems. But 
uncertainty is also about ambiguity [1, 2]. Both variability 
and ambiguity are associated with lack of clarity because of 
the behavior of all system components, lack of data, lack of 
detail, lack of structure to consider the water resources man-
agement problems, working and framing assumptions being 
used to consider the problems, known and unknown sources 
of bias, and ignorance about how much effort it is worth ex-
pending to clarify the management situation. 

Time and Space 

 Uncertainty caused by variability is a result of inherent 
fluctuations in the quantity of interest (hydrologic variables). 
The three major sources of variability are temporal, spatial 
and individual heterogeneity. Temporal variability occurs 
when values fluctuate with time. Other values which are af-
fected by spatial variability are dependent upon location of 
an area. The third category of individual heterogeneity effec-
tively covers all other sources of variability. In water re-
sources management variability is mainly associated with the 
spatial and temporal variation of hydrological variables (pre-
cipitation, river flow, water quality parameters, etc.). 

 The more elusive type of uncertainty is ambiguity which 
is due to a fundamental lack of knowledge. It occurs when 
the particular values that are of interest cannot be presented 
with complete confidence because of a lack of understanding 
or limitation of knowledge. 

Risk Definition 

 An attempt to come up with a standardized definition of 
risk, concluded that a common definition is perhaps una-
chievable and that authors should continue to define risk in 
their own way. As a result, a numerous definitions can be 
found in current literature. At a conceptual level, risk is de-
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fined as significant potential unwelcome effect of water re-
sources system performance or the predicted or expected 
likelihood that a set of circumstances over some time frame 
will produce some harm that matters. More pragmatic treat-
ments view risk as one side of an equation, where risk is 
equated with the probability of failure or the probability of 
load exceeding resistance. Other symbolic expressions 
equate risk with the sum of uncertainty and damage or the 
quotient of hazards divided by safeguards [3]. 

 Three cautions surrounding risk must be taken into con-
sideration: risk cannot be represented objectively by a single 
number alone, risks cannot be ranked on strictly objective 
grounds, and risk should not be labelled as real. Regarding 
the caution of viewing risk as a single number, the multidi-
mensional character of risk can only be aggregated into a 
single number by assigning implicit or explicit weighting 
factors to various numerical measures of risk. Since these 
weighting factors must rely on value judgement, the result-
ing single metric for risk can not be objective. Since risk 
can’t objectively be expressed by a single number, it is not 
possible to rank risks on strictly objective grounds. Finally, 
since risk estimates are evidence-based, risks can’t be strictly 
labelled as real. Rather, they should be labelled inferred at 
best. 

Objective and Subjective Risk 

 A major part of the risk management confusion relates to 
an inadequate distinction between three fundamental types of 
risk: (i) Objective risk (real, physical), Ro, and objective 
probability, po, which is the property of real physical sys-
tems.; (ii) Subjective risk, Rs, and subjective probability, ps. 
Probability is here defined as the degree of belief in a state-
ment. Rs and ps are not properties of the physical systems 
under consideration (but may be some function of Ro and 
po); and (iii) Perceived risk, Rp, which is related to an indi-
vidual’s feeling of fear in the face of an undesirable possible 
event, is not a property of the physical systems but is related 
to fear of unknown. It may be a function of Ro, po, Rs, and ps. 
Because of the confusion between the concepts of objective 
and subjective risk, many characteristics of subjective risk 
are believed to be valid also for objective risk [4]. Therefore, 
it is almost universally assumed that the imprecision of hu-
man judgment is equally prominent and destructive for all 
water resources risk evaluations and all risk assessments. 
This is perhaps the most important misconception that blocks 
the way toward more effective societal risk management. 
The ways society manages risks appear to be dominated by 
considerations of perceived and subjective risks, while it is 
objective risks that kill people, damage the environment and 
create property loss. 

 The main objective of this paper is to present one of the 
possible methodology for the reliability analysis of water 
resources systems that will be capable of: (a) addressing wa-
ter resources uncertainty caused by variability and ambigu-
ity; (b) integrating objective and subjective risk; and (c) as-
sisting the water resources management based on better un-
derstanding of temporal and spatial variability of risk. 

 The following section provides an overview of previous 
work. The introduction of state-of-the-art methodology 
based on the spatial fuzzy reliability analysis follows. An 

illustration of the application of presented methodology to 
flood reliability analysis ends the paper. 

2. PREVIOUS WORK 

Probabilistic Approach 

 Probability is a concept widely accepted and practiced in 
water resources systems management. To perform operations 
associated with probability, it is necessary to use sets – col-
lection of elements, each with some specific characteristics. 

 In the classical interpretation of probability (Equally 
Likely Concept, the probability of an event E can be ob-
tained from 

  
Pr(E) = m(E) / m(S ) , provided that the sample 

space contains N equally likely and different outcomes, i.e., 
m(S) = N, n of which have an outcome (event) E, i.e., m(E) 
= n. Thus Pr(E) = n/N. This definition is often inadequate for 
water resources applications. For example, if failures of a 
pump to start in a water supply plant are observed, it is un-
known whether all failures are equally likely to occur. Nor is 
it clear if the whole spectrum of possible events is observed. 

 In the frequency interpretation of probability, the limita-
tion on the lack of knowledge about the overall sample space 
is remedied by defining the probability as the limit of n/N as 
N becomes large. Therefore, Pr(E) = limN  (n/N). Thus if 
we have observed 2000 starts of a pump in which 20 failed, 
and if we assume that 2000 is a large number, then the prob-
ability of the pump failure to start is 20/2000 = 0.01. The 
frequency interpretation is the most widely used classical 
definition in water resources management today. 

Problems with Probabilistic Approach 

 The probabilistic (stochastic) reliability analysis has been 
extensively used to deal with the problem of uncertainty in 
water resources systems management. Prior knowledge of 
the probability density functions of both resistance and load 
and/or their joint probability distribution function is a pre-
requisite to the probabilistic approach. In practice, data on 
previous failure experience is usually insufficient to provide 
such information. Even if data is available to estimate these 
distributions, approximations are almost always necessary to 
calculate system reliability [5]. The subjective judgment of 
the water resources decision maker to estimate the probabil-
ity distribution of a random event - subjective probability 
approach of Vick [6] - is another approach to deal with data 
insufficiency. The third approach is Bayes’s theory where 
engineering judgment is integrated with observed informa-
tion. 

 Until recently the probabilistic approach was the only 
approach for water resource systems reliability analyses. 
However, it fails to address the problem of uncertainty that 
goes along with human input, subjectivity, lack of history 
and records. There is a real need to convert to new ap-
proaches that can compensate for the ambiguity or uncer-
tainty of human perception. 

Fuzzy Set Approach 

 Fuzzy set theory was intentionally developed to try to 
capture people judgmental believes, or the uncertainty that is 
caused by the lack of knowledge. Relative to the probability 
theory, it has some degree of freedom with respect to aggre-
gation operators, types of fuzzy sets (membership functions), 
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etc, which enables the adaptability to different contexts. 
Probability and fuzziness are related, but different concepts. 
Fuzziness is a type of deterministic uncertainty. It describes 
the event class ambiguity. Fuzziness measures the degree to 
which an event occurs, not whether it occurs. At issue is 
whether the event class can be unambiguously distinguished 
from its opposite. Probability arouses from the question 
whether or not an event occurs. Moreover, it assumes that 
the event class is crisply defined and that the law of non con-
tradiction – for any property and for any definite subject, it is 
not the case both that the subject possesses that property and 
that the subject does not possess that property – holds. 
Fuzziness occurs when the law of non contradiction (and 
equivalently the law of excluded middle – for any property 
and for any individual, either that individual possesses that 
property or that individual does not possess that property) is 
violated. However, it seems more appropriate to investigate 
the fuzzy probability for the latter case, than to completely 
dismiss probability as a special case of fuzziness. 

 In essence, whenever there is an experiment for which 
we are not capable of “computing” the outcome, a probabil-
istic approach may be used to estimate the likelihood of a 
possible outcome belonging to an event class. A fuzzy theory 
extends the traditional notion of a probability when there are 
the outcomes that belong to several event classes at the same 
time but to different degrees. The fuzziness and probability 
are orthogonal concepts that characterize different aspects of 
human experience. Hence, it is important to note that neither 
fuzziness nor probability govern the physical processes in 
Nature. They are introduced by humans to compensate for 
our own limitations. 

3. A NEW METHODOLOGY FOR SPATIAL ANALY-
SIS OF RISK IN WATER RESOURCES MANAGE-

MENT 

Fuzzy Risk Definition and Analysis 

 A new methodology starts with a definition of partial 
failure that provides for the water resource systems reliabil-
ity analysis using three fuzzy performance measures: (i) a 
combined reliability-vulnerability index, (ii) a robustness 

index, and (iii) a resiliency index [7]. The calculation of per-
formance indices depends on the exact definition of unsatis-
factory system performance. Water resources systems reli-
ability analysis uses load and resistance to define the state of 
a system. The failure state occurs when resistance falls be-
low the load. It is difficult to arrive at a precise definition of 
failure because of the uncertainty in determining system re-
sistance, load, and the accepted unsatisfactory performance 
threshold. Fig. (1) depicts a typical system performance (re-
sistance time series), with a constant load during the opera-
tion horizon. According to the classical definition, the failure 
state is the state when resistance falls below the load, margin 
of safety (difference between the resistance and load) M<0.0 
or safety factor <1.0, which is represented by the ratio be-
tween the system’s resistance and load, shown in Fig. (1) by 
the dashed horizontal line. 

 Due to the fluctuation of load and resistance in the man-
agement of water resources systems, partial failure may be 
acceptable. The precise identification of failure is neither 
realistic nor practical. A degree of acceptable system failure 
is introduced using the solid horizontal line, as shown in Fig. 
(1). The region between the dashed and the full line in the 
figure is the region of partial failure that will be called ac-
ceptable failure. 

 The boundary of the acceptable or partial failure region is 
ambiguous and varies from one decision maker to the other 
depending on the personal perception of risk. Fuzzy sets are 
capable of representing the notion of imprecision better than 
ordinary sets and therefore, the acceptable level of perform-
ance can be represented as a fuzzy membership function 
shown in Fig. (2). 

 The reliability assessment, discussed here, involves a 
comparative analysis of the system-state membership func-
tion (see Fig. 2) and the predefined acceptable level of the 
performance membership function. Therefore, the compli-
ance of two fuzzy membership functions can be quantified 
using the fuzzy compatibility measure. Possibility and neces-
sity lead to the quantification of the compatibility of two 
fuzzy sets. The possibility measure quantifies the overlap 
between two fuzzy sets, while the necessity measure de-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Variable system performance. 
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scribes the degree of inclusion of one fuzzy set into another 
fuzzy set. 

 Analysis of the overlap between two fuzzy membership 
functions provides for definition of reliability and vulnerabil-
ity as a complete descriptor of system performance. Once an 
acceptable level of performance is determined in a fuzzy 
form, the anticipated performance in the event of failure as 
well as the expected severity of failure can be determined. A 
comparison between the fuzzy system-state membership 
function and the predefined fuzzy acceptable level of per-
formance membership function provides information about 
both, system reliability and system vulnerability at the same 
time. 

 Robustness measures the system’s ability to adapt to a 
wide range of possible future load conditions. The fuzzy 
form of change in future conditions can be obtained through 
a redefinition of the acceptable level of performance and a 
change in the system-state membership function. As a result, 
the system’s robustness is defined as the change in the com-
patibility measure – overlap of two fuzzy membership func-
tions. 

 Resilience measures how fast the system recovers from 
failure state. The time required to recover from the failure 
state can be represented as a fuzzy set. A series of fuzzy 
membership functions can be developed to allow for various 
types of failure. The maximum recovery time is used to rep-
resent the system recovery time. The center of gravity of the 
maximum fuzzy recovery time can be used as a real number 
representation of the system recovery time. Therefore, sys-
tem resilience is determined to be the inverse value of the 
center of gravity. Fuzzy reliability analysis has been success-
fully tested on the City of London (Ontario, Canada) Re-
gional Water Supply System [8]. 

Spatial Fuzzy Reliability Analysis 

 Integration of fuzzy performance indices computation 
with GIS allows for spatial fuzzy reliability analysis. Each 
cell in a GIS map is considered a decision making location  
 

 

for which the computation of fuzzy indices is done as de-
scribed in the previous section [9]. 

4. FUZZY FLOOD RELIABILITY ANALYSIS – A 
CASE STUDY 

 The utility of the methodology has been tested in reliabil-
ity analysis of floods. The fuzzy flood damage membership 
functions for agricultural land, residential land, one and two 
story buildings are developed based on the flood damage 
data. The compliance of the flood damage membership func-
tion with different acceptable levels of flood damage is as-
sessed for every grid cell. The maximum value of the com-
patibility measures for every grid cell in space is combined 
into a single raster image. The designated maps are used to 
determine the fuzzy combined reliability-vulnerability, fuzzy 
robustness and fuzzy resiliency indices. The spatial represen-
tation of the fuzzy reliability indices provides for easier iden-
tification of flood prone areas and better understanding of 
spatial variation of flood risk. 

Fuzzy Flood Damage in Space 

 In this research, a triangular membership function is used 
to represent the flood damage. Every grid cell in GIS con-
tains flood damage defined by the membership function 

 
S(D) on the universe of discourse D: 

 

S(D) =

0 if D DMin

D DMin

DMean DMin
if D [DMin , DMean ]

DMax D

DMax DMean
if D [DMean , DMax ]

0 if D DMax

 …    (1) 

where, 
 
S(D) is the flood damage membership function; DMean 

is the modal value of the flood damage; and DMin, DMax are 
the lower and the upper bounds of the flood damage value. 

Fuzzy Acceptable Level of Flood Damage in Space 

 The fuzzy acceptable level of flood damage is set for the 
raster image. It is represented as a fuzzy membership func-
tion,
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Fig. (2). Fuzzy representation of the acceptable level of performance and system state. 
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M (D) =

1

(D)

0

if D D1

if D [D1, D2 ]

if D D2

  …         (2) 

where, 
 
M (D) is the fuzzy membership function of margin of 

safety; and D1, D2 are the lower and the upper bounds of the 
acceptable level of flood damage. 

 If the value of flood damage exceeds D2, then the region 
suffers complete damage (Fig. 3). In this case the member-
ship function 

 
M (D)  value is zero. If the value of flood dam-

age is below D2 but exceeds D1, then the region suffers par-
tial flood damage. The membership function, 

 
M (D)  of the 

acceptable level of flood damage attains its maximum value 
of one if the value of flood damage is below D1. 

 Process of calculating fuzzy performance indices is based 
on the use of two input membership functions, as defined by 
equation (1) and (2). Mathematical transformations of infor-
mation from the input membership functions involve calcu-
lation of fuzzy reliability and fuzzy compatibility. 

 Fuzzy reliability (LR) of the acceptable level of flood 
damage is calculated for every grid cell in the raster image as 
follows: 

LR =
D1 D2

D2 D1
   …          (3) 

 Weighted area of the flood damage membership function 
and the weighted overlap area between the acceptable level 
of flood damage membership function and the flood damage 
membership function (Fig. 3) are calculated in GIS for de-
termining the level of compliance. 

 Fuzzy compatibility (CM) between the fuzzy flood dam-
age membership function and the fuzzy acceptable level of 
flood damage membership function is the basis for the calcu-
lation of the fuzzy combined reliability-vulnerability index. 

It is expressed as follows [7]: 

 
Compatibility Measure (CM)  

   = 

 

Weighted overlap area

Weighted area of system - state function
 …         (4) 

Spatial Fuzzy Combined Reliability-Vulnerability Index 

 Fuzzy reliability and fuzzy compatibility of two input 
membership functions are used in mathematical derivation of 
the combined fuzzy reliability-vulnerability index which is 
calculated for each grid cell in GIS: 

REi =
max

i K
CM1,CM 2 ,........CMi{ } LRmax

max
i K

LR1, LR2 ........LRi{ }
 …         (5) 

where, REi is the combined fuzzy reliability-vulnerability 
index for grid cell i; LRmax  is the fuzzy reliability of accept-
able level of damage corresponding to the flood damage with 
maximum compatibility value; LRi  is the fuzzy reliability of 
the i-th acceptable level of flood damage; CMi  is the fuzzy 
compatibility for flood damage with the i-th acceptable level 
of flood damage; and K is the total number of the predefined 
acceptable levels of flood damage. 

 In this work three different acceptable levels of flood 
damage (i.e. conservative, neutral and risky) are considered 
for lands and buildings. Arbitrary shapes of membership 
functions corresponding to three different acceptable levels 
of flood damage are used to capture the range of decision 
maker’s risk perceptions – from risky to conservative (Fig. 
4). The compliance of the flood damage with the three ac-
ceptable levels of flood damage is obtained from the fuzzy 
compatibility using the weighted overlap area approach. 
Then the maximum value of the fuzzy compatibility is con-
sidered. Three fuzzy reliability values (LR) are calculated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Acceptable level of flood damage. 
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from three acceptable levels of flood damage and the maxi-
mum value of LR is determined and assigned to the desig-
nated map [9]. 

 The maximum fuzzy compatibility, the fuzzy reliability 
of acceptable level of flood damage corresponding to the 
flood damage with maximum compatibility, and the maxi-
mum of the fuzzy reliability are used in Equation (5). 

Spatial Fuzzy Robustness Index 

 The adaptability of the system to the change in the ac-
ceptable level of flood damage is spatially represented in 
GIS. Two maps containing compatibility measure values are 
used as inputs in the following equation: 

ROi =
1

CM1 CM 2

  …          (6) 

where, RO is the fuzzy robustness index for the grid cell i; 
CM1 is the compatibility value before the change in the ac-
ceptable level of flood damage; and CM2 is the compatibility 
value after the change in the acceptable level of flood dam-
age. 

 The inverse of the difference in compatibility values be-
tween the two acceptable levels of flood damage is calcu-
lated in each cell of the GIS to give the spatial fuzzy robust-
ness index. The spatial fuzzy robustness index is developed 
for three cases (Fig. 4): change of the acceptable level of 
flood damage from: (i) conservative to neutral; (ii) neutral to 
risky; and (iii) conservative to risky. 

Spatial Fuzzy Resiliency Index 

 Resiliency index measures the ability of system to re-
cover from the failure state. A resilient community is able to 
recover quickly from a flood disaster. After a disaster, post 
flood recovery involves restoring all systems to normal or 
near normal condition. As a measure of the ability to recover 
we use the time necessary to recover from flood which de-

pends upon factors such as water drainage, damage assess-
ment, provision of flood assistance to flood victims, time for 
rebuilding or repairing and return to normal life [10, 11]. 

 The extent of flood damage to structures as well as agri-
cultural and residential lands is a key factor in assessing the 
time required to recover from the flood damage. If a struc-
ture remains submerged for several hours during the flood, 
the damage may be extensive. In such case, to prevent the 
possible high damage in the future, rebuilding the whole 
structure instead of repairing makes more sense. This deci-
sion will increase the cost of recovery as well as the neces-
sary time for recovery. In most cases, high recovery cost 
corresponds to longer recovery time and vice-versa. Based 
upon this assumption, a recovery time vs flood damage rela-
tionship is generated in this research for assessing the recov-
ery time in the post flood stage. Both, flood damage and 
damage vs recovery time relationship, are subjected to uncer-
tainty due to lack of data, subjectivity and ambiguity. There-
fore, the recovery time is also subject to uncertainty which is 
represented using a suitable fuzzy membership function. The 
minimum, modal and maximum flood damage values (D1, 
D2 and D3) are required to calculate the minimum, modal and 
maximum values of the recovery time (t1, t2 and t3) using the 
recovery time vs flood damage relationship: 

 

S(t) =

0 if t t1

t t1

t2 t1

if t [t1,t2 ]

t3 t

t3 t2

if t [t2 ,t3 ]

0 if t t3

  …         (7) 

where, 
 
S(t) is the membership function of the flood recovery 

time; t2 is the modal value of the flood recovery time; and t1, 
t3 are the lower and the upper bound of the flood recovery 
time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Fuzzy membership function of the recovery time. 
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 Flood recovery time varies with the extent of the flood 
damage. The maximum value of the fuzzy flood recovery 
time is used to represent the flood recovery time. The center 
of gravity of the fuzzy flood recovery time is calculated for 
each cell in space as follows: 

 

CGi =

tT (t)dt
t1

t3

T (t)dt
t1

t3
   …          (8) 

where, CGi is the center of gravity of the recovery time 
membership of the i-th cell; i is the subscript of grid cells, 
and i=1,2,3,4,….......N; N is the total number of grid cells; 
and 

 
T (t) is the fuzzy recovery time. 

 The inverse of the center of gravity of the recovery time 
is used to spatially represent the resiliency in a single map. 
The spatial fuzzy resiliency index is calculated as: 

 

RSi = CGi[ ]
1

=

tT (t)dt
t1

t3

T (t)dt
t1

t3

1

  …         (9) 

where, RSi is the fuzzy resiliency index for the i-th grid cell. 

Medway Creek Flooding Analysis 

 The Medway Creek, within the City of London, Ontario, 
Canada is chosen as a study area to illustrate the application 
of spatial fuzzy reliability analysis to flood management. 
Fuzzy flood reliability analysis of Medway Creek is carried 
out from Arva to the confluence of Medway Creek with the 
North Thames River. London is one of the cities flooded by 
the Thames River. An extensive system of dikes and three 
reservoirs have been constructed to provide protection 
against major floods. The Medway Creek near London has a 
mean annual flow of 2.6 m

3
/sec which contributes about 7% 

to the flow of the Thames River downstream of London. 
London is experiencing rapid urban development. Forest and 
agricultural lands are disappearing due to intensive urbaniza-
tion. The population of the City of London has increased 
approximately 43% over the last thirty years (1971 to 2001) 
and shows similar migration trend as that of greater Toronto. 
It is expected that the population of London may increase by 
a total of 67% by the year 2026 [12]. Increase in urban de-
velopment causes (a) reduction in woodlands and agricul-
tural lands; (b) increase of the impervious area; and (c) in-
crease in excess runoff; that makes the city more vulnerable 
to floods. 

Data 

 The watershed layer is created using Digital Elevation 
Model (DEM) with respect to the UTM projected coordinate 
system for zone 17N created in year 2002. The DEM of the 
Upper Thames River Watershed provides the elevation of the 
ground surface. A feature image containing the type of land 
use for the whole Upper Thames Watershed is also used for 
the study region. Twenty four different types of land use are 
present in the Middlesex county landuse map. The ortho-
image of the City of London (photography scale of 1:10,000) 
from April 2004 is also used together with the polygon fea-
tures containing shape files of roads and building structures. 
The location of the building features and road features 
matched exactly with the ortho-imagery and DEM for the 

area of interest in the City London. The hydraulic data of the 
Medway Creek for the study region is acquired from the Up-
per Thames River Conservation Authority (UTRCA) for 
flood plain simulation. The hydraulic data include flow val-
ues for 2 year, 5 year, 10 year, 25 year, 50 year, 100 year and 
500 year return periods at specific cross-sections of the 
Medway Creek. Flood damage assessment is carried out 
considering depth-damage relationship for one and two story 
buildings, residential, and agricultural land. The stage-
damage curve for one and two story buildings with basement 
in the Medway Creek floodplain is developed using the 
Flood Damage Estimation Guide [13]. 

Analyses 

 The spatial fuzzy flood reliability analysis of Medway 
Creek is done in GIS using equations (4), (5), (6) and (9). 
The fuzzy flood damage membership functions for agricul-
tural land, residential land, one and two story buildings are 
developed based on the flood damage data. The compliance 
of the flood damage membership function with different ac-
ceptable levels of flood damage is assessed for every grid 
cell in space. The maximum value of the compatibility for 
every grid cell is combined into a single raster image. The 
designated maps are used to determine fuzzy combined reli-
ability-vulnerability, fuzzy robustness and fuzzy resiliency 
indices. The map of combined fuzzy flood reliability-
vulnerability index of the Medway Creek is in Fig. (5). 

 The GIS maps containing the inverse of the difference in 
compatibility values between two acceptable levels of flood 
damage represent the spatial fuzzy robustness index. The 
fuzzy robustness index measures the adaptability to change 
in the acceptable level of flood damage. Fig. (6) shows the 
maps of fuzzy flood robustness index of the Medway Creek 
for (a) change from conservative to neutral level of the ac-
ceptable flood damage and (b) change from conservative to 
risky level of the acceptable flood damage. 

 Time to recover from flood damage is determined using 
recovery time-damage relationship. Uncertainty in the value 
of recovery time is accounted for using a triangular fuzzy 
membership function. The map of fuzzy flood resiliency 
index of the Medway Creek is shown in Fig. (7). 

Results and Discussion 

 Detailed flood reliability analysis is possible using in-
formation from the maps shown in Figs. (5-7). The quantita-
tive analysis of maps of the entire study region containing 
compatibility values for conservative, neutral and risky level 
of flood damage are provided in Table 1. Change from one 
acceptable level to another results in change of the overlap-
ping area that is used to measure compatibility. About 12.22 
km

2
 of the Medway Creek region belongs to low compatibil-

ity value (zero) for the conservative level of the acceptable 
flood damage (Table 1). In the case of neutral acceptable 
level of the flood damage, area of 9.97 km

2
 shows zero com-

patibility. In the case of risky acceptable level of the flood 
damage, area of 3.32 km

2
 shows zero compatibility. At 

higher level of compatibility (for example value of one) ar-
eas of Medway Creek corresponding to conservative, neutral 
and risky levels of the acceptable flood damage are 8.91 
km

2
, 14.07 km

2
 and 23.42 km

2
, respectively. As expected, an 

increase in the acceptable level of flood damage results in 
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larger area of the study region with higher compatibility 
value. 

 The increase in acceptable level of the flood damage re-
sults in the lower percentage of the Medway Creek area hav-
ing low compatibility decreases and high percentage of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Combined fuzzy flood reliability-vulnerability index map of the Medway Creek. 
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Medway Creek area having high compatibility increases. For 
example, at 0.9 compatibility value (Table 1) increase in area 
is about 4% for the switch from conservative to neutral level 
of the acceptable flood damage, and 74% for the switch from 
conservative to risky level of the acceptable flood damage. 

 Quantitative analysis of the maps for different compati-
bility values show that the largest area with maximum com-
patibility is achieved for the risky acceptable level of the 
flood damage. Therefore the compatibility value map for the 
risky level of acceptable flood damage is used in the devel-
opment of the of spatial combined fuzzy flood reliability-
vulnerability index map of the Medway Creek in Fig. (5). 
The fuzzy flood reliability index is shown in Fig. (5) in the 
range from zero to one. The maximum value that the fuzzy 
reliability index can attain is one. If the actual system has a 
reliability index of one then the system is considered safe or 
highly reliable with low vulnerability. If the value of fuzzy 
reliability index is zero, then the system is considered unsafe 
with low reliability and high vulnerability. In this study a 
color ramp is used (Fig. 5) to show the combined fuzzy flood 
reliability-vulnerability index of the Medway Creek. Blue 
color is used to show low value of the combined fuzzy flood 
reliability-vulnerability index and the high value is shown in 
dark brown color. 

 The combined fuzzy flood reliability-vulnerability index 
for a region or a location of particular interest can be easily 
identified using the color ramp. Land close to Medway 
Creek is found to have low level of flood reliability and high 

vulnerability. The combined fuzzy flood reliability-
vulnerability index value ranges from 0 (dark blue) to 0.3 
(light blue). Yellow marks the areas of higher reliability and 
lower vulnerability compared to the regions closer to the 
river. Value of the combined fuzzy flood reliability-
vulnerability index in this region is between 0.31 (light yel-
low) and 0.45 (dark yellow). Transition to regions with high 
reliability is indicated by the value of combined index in the 
range of 0.46 (dark orange) to 0.6 (light orange). Green 
marks the regions that are more reliable and less vulnerable 
to floods and the index value is between 0.61 and 0.89. Re-
gions with highest reliability are shown in brown color with 
the index value between 0.9 (light brown) and 1.0 (dark 
brown). The region close to the confluence of Medway 
Creek and the North Thames is the most prone to flooding. 
Areas such as these show a very low value of the combined 
fuzzy reliability-vulnerability index of 0 to 0.3. 

 Comparison of the Medway Creek DEM with the map 
shows, as expected, that the regions of low ground surface 
elevation are at higher risk from flooding and therefore have 
a very low combined fuzzy reliability-vulnerability index. 
The residential area near the confluence may suffer signifi-
cant flood damage and large area in the south-east part of the 
map shows low reliability and high vulnerability. Approxi-
mately 6.77 km

2
 of the southern part of the study region near 

the river (43% of the City of London on the map) is the area 
of very low reliability (index value from 0 to 0.3). Western 
part of the study region, 6.14 km

2
 (39% of the City of Lon-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Fuzzy flood robustness index map of the Medway Creek for change (a) from conservative to neutral level of the acceptable flood 

damage; (b) from conservative to risky level of the acceptable flood damage. 
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don on the map) is the area of high reliability (index value 
from 0.9 to 1). 

 Areas north of the City (northern part of the study region) 
are mainly agricultural. It is found that the combined fuzzy 
flood reliability-vulnerability increases in the northern direc-
tion. This is contributed to the fact that the flood damage to 
agricultural land is lower than the flood damage to residen-
tial land. Almost 98% of the agricultural land under continu-
ous row crop and corn shows the index value between 0.7 

and 1.0. Almost 99% of the land under hay has the index 
value between 0.9 and 1.0. The change in the combined 
fuzzy flood reliability-vulnerability index is clearly seen on 
the map - many regions within the urban part of the City of 
London are in blue (low reliability and high vulnerability); 
north of the City, the agricultural regions show a transition 
from blue to green and brown (higher reliability and lower 
vulnerability). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Fuzzy flood resiliency index map of the Medway Creek. 
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 The fuzzy robustness index is directly related to the 
change in fuzzy compatibility value. The higher the change 
in compatibility value, the lower the value of fuzzy robust-
ness index and vice-versa. The higher the value of the fuzzy 
robustness index, the higher the systems ability to adapt to 
changing conditions. Fuzzy flood robustness index of the 
Medway Creek is expressed using a color ramp, with blue 
representing location with low robustness and dark brown 
with high robustness (Fig. 6). 

 When the acceptable level of flood damage changes from 
a conservative level to a neutral level, the fuzzy flood ro-
bustness index value is in the range from 2.94 (less robust) to 
10 (highly robust). Areas near the river and the confluence 
on the map in Fig. (6a) are shown in blue (fuzzy flood ro-
bustness index value between 2.94 and 4.25). Land close to 
Medway Creek and the confluence shows lower robustness 
compared to the areas further away from the river which are 
shown in yellow (index range from 4.25 to 6.3), orange (in-
dex range from 6.3 to 7.10), green (index range from 7.11 to 
9.3) or brown (index range from 9.4 to 10). 

 Adaptation to change in the acceptable level of flood 
damage from conservative to risky is more difficult and the 
value of fuzzy flood robustness index decreases. Map in Fig. 
(6b) shows areas near the river and the confluence with 
much lower value of the fuzzy flood robustness index, from 
1.39 to 3. 

 When the acceptable level of flood damage changes from 
neutral to risky, the fuzzy flood robustness index shows 
lower decline compared to the change from conservative to 
risky level of the acceptable flood damage. In the case of 
change from conservative to neutral level, approximately 
7.97 km

2
 of the study region shows robustness index be-

tween 0 and 3. For change from neutral to risky and conser-
vative to risky, the area increases to 23.3 km

2
 and 32.4 km

2
, 

respectively. The more drastic change in the acceptable level 

of flood damage results in lower robustness. Also, locations 
further away from the river and low lying areas show higher 
robustness to flooding. 

 The time necessary to recover from flood depends on the 
severity of the flood event. The longer recovery time indi-
cates lower resiliency. Similarly, systems that recover 
quickly have high level of resiliency. Fuzzy flood resiliency 
index map of the Medway Creek is shown in Fig. (7). The 
value of fuzzy flood resiliency index for the study region is 
expressed using a color ramp. The dark blue color represents 
low resiliency value of 0 - low ability for a quick recovery. 
Dark brown color represents the highest value of resiliency 
in the region (1.97) - high ability for a quick recovery. 

 Areas close to the Medway Creek and the confluence 
region are areas of low resiliency (shown in blue). The fuzzy 
flood resiliency index for these areas ranges from 0 (dark 
blue) to 0.23 (light blue). Due to low elevation just north and 
south of the confluence, submerged areas need more time to 
recover. The residential area near the confluence is subject to 
high flood damage that requires long recovery time – there-
fore low fuzzy flood resiliency index value. Regions outside 
the floodplain show higher resiliency. They are represented 
on the map in yellow (fuzzy flood resiliency index value 
from 0.24 to 0.34), orange (fuzzy flood resiliency index 
value from 0.35 to 0.45), green (fuzzy flood resiliency index 
value from 0.46 to 0.6) and brown (fuzzy flood resiliency 
index value from 0.61 to 1.97). The agricultural land north of 
the City of London shows high resiliency (indicated in green 
and brown on the map in Fig. (7)). 

5. CONCLUSIONS 

 Research discussed in this paper is focusing on one pos-
sible methodology for the reliability analysis of water re-
sources systems that is capable of: (a) addressing water re-
sources uncertainty caused by variability and ambiguity; (b) 
integrating objective and subjective risk; and (c) assisting the 

Table 1. Area and Percent Change in the Area of the Study Region Corresponding to Different Compatibility Value and Different 

Level of the Acceptable Flood Damage 

 

Area (km
2
) corresponding to different level of the  

acceptable flood damage 

Percent change in area for changing levels of the  

acceptable flood damage 

C
o

m
p

a
ti

b
il

it
y

 v
a

lu
e
 

Conservative Neutral Risky Conservative to neutral Neutral to risky Conservative to risky 

0.0 12.22 9.97 3.32 -18 -67 -73 

0.1 6.57 1.71 2.65 -74 55 -60 

0.2 4.51 1.34 1.53 -70 14 -66 

0.3 3.88 4.95 1.54 28 -69 -60 

0.4 2.90 3.81 1.05 32 -72 -64 

0.5 2.77 4.14 1.12 50 -73 -60 

0.6 3.28 3.12 1.24 -5 -60 -62 

0.7 2.92 3.16 5.06 8 60 73 

0.8 2.55 4.07 6.75 59 66 165 

0.9 3.81 3.97 6.63 4 67 74 

1.0 8.91 14.07 23.42 58 66 163 
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water resources management based on better understanding 
of spatial variability of risk. 

 Use of fuzzy reliability analysis provides for addressing 
water resources management uncertainty caused by variabil-
ity and ambiguity. Risk is described using a combined fuzzy 
reliability and vulnerability, fuzzy robustness and fuzzy re-
siliency. Innovative risk definition required for the applica-
tion of fuzzy reliability analysis integrates objective and sub-
jective aspects of water resources management risk. Fuzzy 
reliability analysis has been successfully extended into a 
spatial fuzzy reliability analysis for taking explicitly into 
consideration spatial variability of water resources manage-
ment risk. 

 Fuzzy reliability indices implemented through the GIS 
are used to illustrate the proposed methodology for the flood 
reliability analysis of Medway Creek within the City of Lon-
don. The study region is of high significance as the popula-
tion of the city grows and development in the floodplains 
may become a major source of future risk to residents and 
economy of the community. The study region consists of 
residential and agricultural land. A floodplain map is gener-
ated first for the study region and then the damage is esti-
mated based on the depth-damage relationships. This work 
examines the damage that may occur to buildings, residential 
and agricultural land based on the 500 year flood. Fuzzy 
performance indices are used to assess the ability of the 
study area to withstand possible flooding conditions. 

 Ambiguity in the definition of failure is expressed by the 
fuzzy membership function of acceptable level of flood 
damage. As the acceptable level of flood damage increases, 
more land becomes exposed to the higher level of flood 
damage. Different patterns of flood damage exposure are 
obtained for the various types of land use. 

 The final results of the fuzzy flood reliability analysis are 
presented using maps that show the variation of reliability-
vulnerability, robustness and resiliency in space. Quantita-
tive analysis of maps generated by the proposed methodol-
ogy shows that the high acceptable level of flood damage 
can result in larger area of high flood reliability and high 
flood resiliency and the low acceptable level of flood dam-
age can result in low flood reliability and low flood resil-
iency. 

 Maps of fuzzy reliability indices provide additional deci-
sion support for (a) land use planning, (b) selection of ap-
propriate flood mitigation strategies, (c) planning emergency 

management measures, (d) selecting an appropriate construc-
tion technology for flood prone areas, and (e) flood insur-
ance. Use of the acceptable partial flood damage concept 
allows for the expression of decision maker’s risk prefer-
ences and the examination of their impact on flood manage-
ment decisions. 
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